Skip to content

Statistical Models with Regularization in Pure Julia

License

Notifications You must be signed in to change notification settings

spri902/SparseRegression.jl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SparseRegression

Documentation Master Build Test Coverage
Build Status Build status codecov

This package relies on primitives defined in the JuliaML ecosystem to implement high-performance algorithms for linear models which often produce sparsity in the coefficients.

Quickstart

using Pkg
Pkg.add("SparseRegression")
using SparseRegression

x = randn(10_000, 50)
y = x * range(-1, stop=1, length=50) + randn(10_000)

s = SModel(x, y, L2DistLoss(), L2Penalty())
@time learn!(s)
s

About

Statistical Models with Regularization in Pure Julia

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Julia 100.0%