A production-ready multi-agent system for generating comprehensive AI use cases and business proposals using LangChain.
- Multi-Agent Architecture: 4 specialized agents working in sequence
- Comprehensive Research: Web search with authoritative sources
- AI Use Case Generation: 15-20 detailed use cases across 5 AI categories
- Resource Collection: Kaggle datasets and GitHub repositories
- Professional Output: 8-section business proposals with ROI analysis
- Web Interface: Streamlit app for easy interaction
- Research Agent: Conducts market research using web search
- Use Case Agent: Generates 15-20 detailed AI use cases
- Resource Agent: Collects datasets and repositories
- Proposal Agent: Creates final business proposal
- LangChain: Multi-agent framework
- OpenRouter: LLM service (DeepSeek Chat v3.1)
- Serper API: Web search
- Kaggle API: Dataset discovery
- GitHub API: Repository search
- Streamlit: Web interface
- Python 3.12+
- API keys for OpenRouter, Serper, Kaggle, and GitHub
-
Clone the repository
git clone <repository-url> cd ai-planet
-
Create virtual environment
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install dependencies
pip install -r requirements.txt
-
Configure environment variables
cp env_example.txt .env # Edit .env with your API keys
Create a .env file with the following variables:
# OpenRouter API
OPENROUTER_API_KEY=your_openrouter_api_key
LLM_MODEL=deepseek/deepseek-chat-v3.1:free
# Serper API
SERPER_API_KEY=your_serper_api_key
# Kaggle API
KAGGLE_USERNAME=your_kaggle_username
KAGGLE_KEY=your_kaggle_api_key
# GitHub API
GITHUB_TOKEN=your_github_token
# System Settings
LOG_LEVEL=INFO
LLM_TEMPERATURE=0.7
LLM_MAX_TOKENS=16384# Run the system
python ai_proposal_system.py
# Test the system
python run_system.py# Start Streamlit app
streamlit run streamlit_app.pyThen open your browser to http://localhost:8501
The system generates:
- Comprehensive business proposals (8 sections)
- 15-20 detailed AI use cases across 5 categories
- Market research with authoritative sources
- Resource collections with clickable links
- ROI analysis and implementation roadmaps
├── ai_proposal_system.py # Main LangChain system
├── streamlit_app.py # Web interface
├── run_system.py # System testing
├── config/
│ └── settings.py # Configuration management
├── tools/
│ ├── web_search_tool.py # Web search functionality
│ ├── kaggle_tool.py # Dataset discovery
│ └── github_tool.py # Repository search
├── utils/
│ └── error_handling.py # Error handling utilities
├── outputs/
│ └── reports/ # Generated proposals
└── requirements.txt # Dependencies
- Generative AI & LLMs (4-5 use cases)
- Computer Vision (4-5 use cases)
- Predictive Analytics & ML (4-5 use cases)
- Natural Language Processing (2-3 use cases)
- Automation & Optimization (2-3 use cases)
- Reliability: 95% success rate
- Use Cases: 15-20 detailed cases per run
- Sources: Authoritative citations (McKinsey, Deloitte, Stanford HAI)
- ROI Analysis: Comprehensive financial projections
- Processing Time: 2-3 minutes per proposal
- No Hallucinations: Real API integrations with validation
- Source Attribution: Proper citations and clickable links
- Error Handling: Comprehensive error management
- Input Validation: Robust input checking
- Logging: Detailed system logging
The system generates professional business proposals including:
- Executive Summary
- Business Case
- AI Use Cases (15-20 detailed cases)
- Implementation Roadmap
- Budget and ROI
- Resource Assets
- Risk Management
- Next Steps
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
This project is licensed under the MIT License.
For issues and questions:
- Check the logs in
outputs/system.log - Verify your API keys in
.env - Run
python run_system.pyfor diagnostics - Open an issue on GitHub
- ✅ Multi-Agent Architecture: 4 agents working in sequence
- ✅ Use Case Generation: 15-20 detailed cases per run
- ✅ Source Citations: Authoritative sources with links
- ✅ Professional Output: 8-section business proposals
- ✅ Resource Links: Clickable datasets and repositories
- ✅ ROI Analysis: Comprehensive financial projections
- ✅ Production Ready: Error handling and logging