Skip to content

sscardapane/d2sample

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Differentiable Discrete Samplers (d2sample)

d2sample is a collection of PyTorch differentiable samplers for discrete objects, with associated examples and layers (TBD). Install by first cloning recursively:

git clone --recursive git@github.com:sscardapane/d2sample.git

Then (for now) add to the path:

import sys
sys.path.append('./d2sample/')

Requirements

Implemented algorithms

$k$-subset sampling (see notebook):

  1. Gumbel-Softmax with continuous top-$k$ relaxation (Xie & Ermon, 2019). For $k=1$ this reduces to the standard Gumbel-Softmax reparameterization available inside PyTorch.
  2. Top-k selection with I-MLE (Niepert, Minervini, & Franceschi, 2021).
  3. SIMPLE: Subset Implicit Likelihood Estimation (Ahmed, Zeng, Niepert, & Van den Broeck, 2022).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published