Download refseq-genomic data and prepare it for Kraken
Similar approach as in: http://www.opiniomics.org/building-a-kraken-database-with-new-ftp-structure-and-no-gi-numbers/
I borrowed freely, however, this is a Python2
rewrite.
Its improved in two ways:
- I split the tasks of data download and kraken data preparation.
- Both separate tasks allow multithreading to be used.
- Python2
- BioPython
- Linux shell with rsync and Git
- ~10GB of space for compressed ncbi refseq fasta-files
- ~40GB of space for processed uncompressed kraken-readable fasta-files
- ~130GB if a complete Kraken database is build without restricting its size (e.g. with --max-db-size 20)
This script will retrieve genomic data from refseq via rsync. It saves on downloads as only files that updated or are new will be downloaded in sub-sequent runs.
Warning! Using this script will make one rsync call to the ftp-server from ncbi per file you want to download. In case of bacteria and all assembly levels, this will result in ~70000 ftp-server accesses. There might be a limit on what ncbi allows in terms of connections to their ftp-server. If you overdo it, ncbi might take action against you. Use this script at your own risk.
usage: getRefseqGenomic.py [-h] [--version] [-b BRANCH] [-l LEVEL] [-a]
[-p INT]
Download fasta-genomic sequences from ncbi using rsync.
optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit
-b BRANCH, --branch BRANCH
Branches of organisms to download separated by comma,
e.g. bacteria, fungi, etc. [default="
bacteria,viral,fungi,protozoa,archaea"]
-l LEVEL, --level LEVEL
Assembly - level of genomic sequences to include,
separated by comma. For example: Chromosome, Contig,
Scaffold. [default="Complete Genome"]
-a, --assembly Print assembly stats for branches and exits.
Threading:
Multithreading arguments:
-p INT, --processes INT
Number of sub-processes (concurrent downloads) to use.
It is only logical to not give more processes than
cpus/cores are available. [default: 1]
Copyright Sebastian Schmeier (s.schmeier@gmail.com)
The simplest call would be:
# all default branches + all default "assembly_level"s of assemblies.
python getRefseqGenomic.py -p 8
# for only one branch only
python getRefseqGenomic.py -b archaea -p 8
This would download "Complete Genome" assembly genomic sequences for "bacteria, viral, fungi, protozoa, archaea". However, this might not be what you necessarily want . Instead one can use the following to download "Contig" and "Scaffold" assemblies for archaea:
python getRefseqGenomic.py -b archaea -l "Contig,Scaffold" -p 8
You can check the stats on the assembly levels with -a
. This will only
download the assembly_summary.txt for the branch(es) and counts the different "assembly_level"s
available.
python getRefseqGenomic.py -a -b protozoa
Branch: protozoa
Chromosome 25
Complete Genome 2
Contig 2
Scaffold 45
Should you at a later stage re-run the command, rsync
makes sure to only
download changed files (Attention: in terms of filesize, not content).
This script will take fasta-files and create new "uncompressed" (Kraken
needs uncompressed files) fasta-files with each header changed to a form:
>seq1|kraken:taxid|12345 blah
. This allows to use the new ncbi files (without
GI identifiers) with Kraken
. Requieres the third-party BioPython
lib.
usage: getKrakenFna.py [-h] [--version] [-b BRANCH] [-l LEVEL] [-d DIRECTORY]
[-a] [-p INT]
KrakenDB-DIR
Process fasta-genomic sequences from NCBI-refseq for inclusion in a KrakenDB.
A branch's assembly_summary.txt as well as all of its *_genomic.fna.gz files
are assumed to be in a sub-directory called like the branch, e.g.
./genomes/refseq/bacteria
positional arguments:
KrakenDB-DIR Directory name for the processed fasta-files for
kraken. Will be created if not found.
optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit
-b BRANCH, --branch BRANCH
Branches of organisms to download separated by comma,
e.g. bacteria, fungi, etc. [default="
bacteria,viral,fungi,protozoa,archaea"]
-l LEVEL, --level LEVEL
Assembly - level of genomic sequences to include,
separated by comma. For example: Chromosome, Contig,
Scaffold. [default="Complete Genome"]
-d DIRECTORY, --dir DIRECTORY
Base directory for refseq fasta-files. Here, we assume
sub-directories for branches, e.g. bacteria etc.
[default="./genomes/refseq/"]
-a, --assembly Print assembly stats for branches and exits.
Threading:
Multithreading arguments:
-p INT, --processes INT
Number of concurrent sub-processes to use. It is only
logical to not give more processes than cpus/cores are
available. [default: 1]
Copyright Sebastian Schmeier (s.schmeier@gmail.com)
Usage:
python getKrakenFna.py -b archaea -p 8 kraken_201612
# will create a dir kraken_201612/archaea with converted files.
# clone repo
git clone https://github.com/sschmeier/refseq2kraken.git kraken
cd kraken
# Download refseq => here only "Complete Genome"
# assemblies, e.g. the default
python getRefseqGenomic.py -p 8
# convert to kraken format => again only "Complete Genome"
# assemblies here, e.g. the default
python getKrakenFna.py -p 8 kraken_201612
# install kraken if you must
conda create -n kraken kraken-all
source activate kraken
# build a new minikraken database
# download taxonomy
kraken-build --download-taxonomy --db kraken-db-bva_201612
# for each branch, add all fna in the directory to the database
for dir in bacteria viral archaea ; do
find kraken_201612/$dir/ -name '*.fna' -print0 | xargs -0 -I{} -n1 -P8 kraken-build --add-to-library {} --db kraken-db-bva_201612;
done
# build the actual database restrict its size here to 20GB
kraken-build --build --db kraken-db-bva_201612 --max-db-size 20
# remove intermediate files
kraken-build --clean --db kraken-db-bva_201612
# classify seqs
kraken --db kraken-db-bva_201612 test_seqs/bva_test.fa > test_seqs/bva-results.txt
# get report of all taxa found in sample
kraken-report --show-zeros --db kraken-db-bva_201612 test_seqs/bva-results.txt | sort -n -k 5 | gzip > test_seqs/bva-results-report.txt.gz
# ONLY for testing the
# attach taxonomy names of classification resutls + test seqs original tax names (use without --eval for non-test case)
# python getTaxNames.py kraken-db-bva_201612/taxonomy/names.dmp test_seqs/bva-results.txt --eval > test_seqs/bva-results-names.txt