-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
301 additions
and
34 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
|
||
import math | ||
from typing import List, Optional, Tuple, Union | ||
|
||
import torch | ||
import torch.nn.functional as F | ||
import torch.utils.checkpoint | ||
from torch import nn | ||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | ||
from transformers.models.llama.modeling_llama import * | ||
class LlamaForSequenceClassification(LlamaPreTrainedModel): | ||
def __init__(self, config): | ||
super().__init__(config) | ||
self.num_labels = config.num_labels | ||
self.model = LlamaModel(config) | ||
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | ||
|
||
# Initialize weights and apply final processing | ||
self.post_init() | ||
self.loss_func = 'mse' | ||
self.sigmoid = nn.Sigmoid() | ||
|
||
def get_input_embeddings(self): | ||
return self.model.embed_tokens | ||
|
||
def set_input_embeddings(self, value): | ||
self.model.embed_tokens = value | ||
|
||
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) | ||
def forward( | ||
self, | ||
input_ids: Optional[torch.LongTensor] = None, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
position_ids: Optional[torch.LongTensor] = None, | ||
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | ||
inputs_embeds: Optional[torch.FloatTensor] = None, | ||
labels: Optional[torch.LongTensor] = None, | ||
use_cache: Optional[bool] = None, | ||
output_attentions: Optional[bool] = None, | ||
output_hidden_states: Optional[bool] = None, | ||
return_dict: Optional[bool] = None, | ||
) -> Union[Tuple, SequenceClassifierOutputWithPast]: | ||
r""" | ||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | ||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | ||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | ||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | ||
""" | ||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | ||
|
||
transformer_outputs = self.model( | ||
input_ids, | ||
attention_mask=attention_mask, | ||
position_ids=position_ids, | ||
past_key_values=past_key_values, | ||
inputs_embeds=inputs_embeds, | ||
use_cache=use_cache, | ||
output_attentions=output_attentions, | ||
output_hidden_states=output_hidden_states, | ||
return_dict=return_dict, | ||
) | ||
hidden_states = transformer_outputs[0] | ||
logits = self.score(hidden_states) | ||
|
||
if input_ids is not None: | ||
batch_size = input_ids.shape[0] | ||
else: | ||
batch_size = inputs_embeds.shape[0] | ||
|
||
if self.config.pad_token_id is None and batch_size != 1: | ||
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | ||
if self.config.pad_token_id is None: | ||
sequence_lengths = -1 | ||
else: | ||
if input_ids is not None: | ||
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility | ||
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | ||
sequence_lengths = sequence_lengths % input_ids.shape[-1] | ||
sequence_lengths = sequence_lengths.to(logits.device) | ||
else: | ||
sequence_lengths = -1 | ||
|
||
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | ||
|
||
loss = None | ||
if labels is not None: | ||
labels = labels.to(logits.device) | ||
if self.config.problem_type is None: | ||
if self.num_labels == 1: | ||
self.config.problem_type = "regression" | ||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | ||
self.config.problem_type = "single_label_classification" | ||
else: | ||
self.config.problem_type = "multi_label_classification" | ||
|
||
if self.config.problem_type == "regression": | ||
loss_fct = MSELoss() | ||
if self.num_labels == 1: | ||
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | ||
else: | ||
loss = loss_fct(pooled_logits, labels) | ||
elif self.config.problem_type == "single_label_classification": | ||
loss_fct = CrossEntropyLoss() | ||
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | ||
elif self.config.problem_type == "multi_label_classification": | ||
loss_fct = BCEWithLogitsLoss() | ||
loss = loss_fct(pooled_logits, labels) | ||
if not return_dict: | ||
output = (pooled_logits,) + transformer_outputs[1:] | ||
return ((loss,) + output) if loss is not None else output | ||
|
||
return SequenceClassifierOutputWithPast( | ||
loss=loss, | ||
logits=pooled_logits, | ||
past_key_values=transformer_outputs.past_key_values, | ||
hidden_states=transformer_outputs.hidden_states, | ||
attentions=transformer_outputs.attentions, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
|
||
from transformers.configuration_utils import PretrainedConfig | ||
from transformers.modeling_rope_utils import rope_config_validation | ||
|
||
|
||
class LlamaConfig(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA | ||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | ||
defaults will yield a similar configuration to that of the LLaMA-7B. | ||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. | ||
Args: | ||
vocab_size (`int`, *optional*, defaults to 32000): | ||
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the | ||
`inputs_ids` passed when calling [`LlamaModel`] | ||
hidden_size (`int`, *optional*, defaults to 4096): | ||
Dimension of the hidden representations. | ||
intermediate_size (`int`, *optional*, defaults to 11008): | ||
Dimension of the MLP representations. | ||
num_hidden_layers (`int`, *optional*, defaults to 32): | ||
Number of hidden layers in the Transformer decoder. | ||
num_attention_heads (`int`, *optional*, defaults to 32): | ||
Number of attention heads for each attention layer in the Transformer decoder. | ||
num_key_value_heads (`int`, *optional*): | ||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | ||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | ||
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When | ||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | ||
by meanpooling all the original heads within that group. For more details checkout [this | ||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | ||
`num_attention_heads`. | ||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | ||
The non-linear activation function (function or string) in the decoder. | ||
max_position_embeddings (`int`, *optional*, defaults to 2048): | ||
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens, | ||
Llama 2 up to 4096, CodeLlama up to 16384. | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
rms_norm_eps (`float`, *optional*, defaults to 1e-06): | ||
The epsilon used by the rms normalization layers. | ||
use_cache (`bool`, *optional*, defaults to `True`): | ||
Whether or not the model should return the last key/values attentions (not used by all models). Only | ||
relevant if `config.is_decoder=True`. | ||
pad_token_id (`int`, *optional*): | ||
Padding token id. | ||
bos_token_id (`int`, *optional*, defaults to 1): | ||
Beginning of stream token id. | ||
eos_token_id (`int`, *optional*, defaults to 2): | ||
End of stream token id. | ||
pretraining_tp (`int`, *optional*, defaults to 1): | ||
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this | ||
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to | ||
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining | ||
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). | ||
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | ||
Whether to tie weight embeddings | ||
rope_theta (`float`, *optional*, defaults to 10000.0): | ||
The base period of the RoPE embeddings. | ||
rope_scaling (`Dict`, *optional*): | ||
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type | ||
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value | ||
accordingly. | ||
Expected contents: | ||
`rope_type` (`str`): | ||
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', | ||
'llama3'], with 'default' being the original RoPE implementation. | ||
`factor` (`float`, *optional*): | ||
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In | ||
most scaling types, a `factor` of x will enable the model to handle sequences of length x * | ||
original maximum pre-trained length. | ||
`original_max_position_embeddings` (`int`, *optional*): | ||
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during | ||
pretraining. | ||
`attention_factor` (`float`, *optional*): | ||
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention | ||
computation. If unspecified, it defaults to value recommended by the implementation, using the | ||
`factor` field to infer the suggested value. | ||
`beta_fast` (`float`, *optional*): | ||
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear | ||
ramp function. If unspecified, it defaults to 32. | ||
`beta_slow` (`float`, *optional*): | ||
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear | ||
ramp function. If unspecified, it defaults to 1. | ||
`short_factor` (`List[float]`, *optional*): | ||
Only used with 'longrope'. The scaling factor to be applied to short contexts (< | ||
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | ||
size divided by the number of attention heads divided by 2 | ||
`long_factor` (`List[float]`, *optional*): | ||
Only used with 'longrope'. The scaling factor to be applied to long contexts (< | ||
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | ||
size divided by the number of attention heads divided by 2 | ||
`low_freq_factor` (`float`, *optional*): | ||
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE | ||
`high_freq_factor` (`float`, *optional*): | ||
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE | ||
attention_bias (`bool`, *optional*, defaults to `False`): | ||
Whether to use a bias in the query, key, value and output projection layers during self-attention. | ||
attention_dropout (`float`, *optional*, defaults to 0.0): | ||
The dropout ratio for the attention probabilities. | ||
mlp_bias (`bool`, *optional*, defaults to `False`): | ||
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers. | ||
```python | ||
>>> from transformers import LlamaModel, LlamaConfig | ||
>>> # Initializing a LLaMA llama-7b style configuration | ||
>>> configuration = LlamaConfig() | ||
>>> # Initializing a model from the llama-7b style configuration | ||
>>> model = LlamaModel(configuration) | ||
>>> # Accessing the model configuration | ||
>>> configuration = model.config | ||
```""" | ||
|
||
model_type = "llama" | ||
keys_to_ignore_at_inference = ["past_key_values"] | ||
|
||
def __init__( | ||
self, | ||
vocab_size=32000, | ||
hidden_size=4096, | ||
intermediate_size=11008, | ||
num_hidden_layers=32, | ||
num_attention_heads=32, | ||
num_key_value_heads=None, | ||
hidden_act="silu", | ||
max_position_embeddings=2048, | ||
initializer_range=0.02, | ||
rms_norm_eps=1e-6, | ||
use_cache=True, | ||
pad_token_id=None, | ||
bos_token_id=1, | ||
eos_token_id=2, | ||
pretraining_tp=1, | ||
tie_word_embeddings=False, | ||
rope_theta=10000.0, | ||
rope_scaling=None, | ||
attention_bias=False, | ||
attention_dropout=0.0, | ||
mlp_bias=False, | ||
**kwargs, | ||
): | ||
self.vocab_size = vocab_size | ||
self.max_position_embeddings = max_position_embeddings | ||
self.hidden_size = hidden_size | ||
self.intermediate_size = intermediate_size | ||
self.num_hidden_layers = num_hidden_layers | ||
self.num_attention_heads = num_attention_heads | ||
|
||
# for backward compatibility | ||
if num_key_value_heads is None: | ||
num_key_value_heads = num_attention_heads | ||
|
||
self.num_key_value_heads = num_key_value_heads | ||
self.hidden_act = hidden_act | ||
self.initializer_range = initializer_range | ||
self.rms_norm_eps = rms_norm_eps | ||
self.pretraining_tp = pretraining_tp | ||
self.use_cache = use_cache | ||
self.rope_theta = rope_theta | ||
self.rope_scaling = rope_scaling | ||
self.attention_bias = attention_bias | ||
self.attention_dropout = attention_dropout | ||
self.mlp_bias = mlp_bias | ||
|
||
# Validate the correctness of rotary position embeddings parameters | ||
rope_config_validation(self) | ||
|
||
super().__init__( | ||
pad_token_id=pad_token_id, | ||
bos_token_id=bos_token_id, | ||
eos_token_id=eos_token_id, | ||
tie_word_embeddings=tie_word_embeddings, | ||
**kwargs, | ||
) |
Empty file.
File renamed without changes.
File renamed without changes.