Skip to content

stdlib-js/stats-base-dists-hypergeometric-pmf

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

Probability Mass Function

NPM version Build Status Coverage Status

Hypergeometric distribution probability mass function (PMF).

Imagine a scenario with a population of size N, of which a subpopulation of size K can be considered successes. We draw n observations from the total population. Defining the random variable X as the number of successes in the n draws, X is said to follow a hypergeometric distribution. The probability mass function (PMF) for a hypergeometric random variable is given by

$$f(x;N,K,n)=P(X=x;N,K,n)=\begin{cases} {{{K \choose x} {N-K \choose {n-x}}}\over {{N} \choose n}} & \text{ for } x = 0,1,2,\ldots \\ 0 & \text{ otherwise} \end{cases}$$

Installation

npm install @stdlib/stats-base-dists-hypergeometric-pmf

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var pmf = require( '@stdlib/stats-base-dists-hypergeometric-pmf' );

pmf( x, N, K, n )

Evaluates the probability mass function (PMF) for a hypergeometric distribution with parameters N (population size), K (subpopulation size), and n (number of draws).

var y = pmf( 1.0, 8, 4, 2 );
// returns ~0.571

y = pmf( 2.0, 8, 4, 2 );
// returns ~0.214

y = pmf( 0.0, 8, 4, 2 );
// returns ~0.214

y = pmf( 1.5, 8, 4, 2 );
// returns 0.0

If provided NaN as any argument, the function returns NaN.

var y = pmf( NaN, 10, 5, 2 );
// returns NaN

y = pmf( 0.0, NaN, 5, 2 );
// returns NaN

y = pmf( 0.0, 10, NaN, 2 );
// returns NaN

y = pmf( 0.0, 10, 5, NaN );
// returns NaN

If provided a population size N, subpopulation size K or draws n which is not a nonnegative integer, the function returns NaN.

var y = pmf( 2.0, 10.5, 5, 2 );
// returns NaN

y = pmf( 2.0, 10, 1.5, 2 );
// returns NaN

y = pmf( 2.0, 10, 5, -2.0 );
// returns NaN

If the number of draws n exceeds population size N, the function returns NaN.

var y = pmf( 2.0, 10, 5, 12 );
// returns NaN

y = pmf( 2.0, 8, 3, 9 );
// returns NaN

pmf.factory( N, K, n )

Returns a function for evaluating the probability mass function (PMF) of a hypergeometric distribution with parameters N (population size), K (subpopulation size), and n (number of draws).

var mypmf = pmf.factory( 30, 20, 5 );
var y = mypmf( 4.0 );
// returns ~0.34

y = mypmf( 1.0 );
// returns ~0.029

Examples

var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var pmf = require( '@stdlib/stats-base-dists-hypergeometric-pmf' );

var i;
var N;
var K;
var n;
var x;
var y;

for ( i = 0; i < 10; i++ ) {
    x = round( randu() * 5.0 );
    N = round( randu() * 20.0 );
    K = round( randu() * N );
    n = round( randu() * N );
    y = pmf( x, N, K, n );
    console.log( 'x: %d, N: %d, K: %d, n: %d, P(X=x;N,K,n): %d', x, N, K, n, y.toFixed( 4 ) );
}

C APIs

Usage

#include "stdlib/stats/base/dists/hypergeometric/pmf.h"

stdlib_base_dists_hypergeometric_pmf( x, N, K, n )

Evaluates the probability mass function (PMF) for a hypergeometric distribution with parameters N (population size), K (subpopulation size), and n (number of draws).

double out = stdlib_base_dists_hypergeometric_pmf( 1.0, 8, 4, 2 );
// returns ~0.571

The function accepts the following arguments:

  • x: [in] double input value.
  • N: [in] int32_t population size.
  • K: [in] int32_t subpopulation size.
  • n: [in] int32_t number of draws.
double stdlib_base_dists_hypergeometric_pmf( const double x, const int32_t N, const int32_t K, const int32_t n );

Examples

#include "stdlib/stats/base/dists/hypergeometric/pmf.h"
#include "stdlib/math/base/special/round.h"
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>

static double random_uniform( const double min, const double max ) {
    double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
    return min + ( v * ( max - min ) );
}

int main( void ) {
    int32_t N;
    int32_t K;
    int32_t n;
    double x;
    double y;
    int i;

    for ( i = 0; i < 10; i++ ) {
        x = stdlib_base_round( random_uniform( 0.0, 5.0 ) );
        N = stdlib_base_round( random_uniform( 0.0, 20.0 ) );
        K = stdlib_base_round( random_uniform( 0.0, N ) );
        n = stdlib_base_round( random_uniform( 0.0, N ) );
        y = stdlib_base_dists_hypergeometric_pmf( x, N, K, n );
        printf( "x: %lf, N: %d, K: %d, n: %d, P(X=x;N,K,n): %lf\n", x, N, K, n, y );
    }
}

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2025. The Stdlib Authors.