-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Stock Neural Network + Auxiliary Code
- Loading branch information
1 parent
ec54f94
commit a5a223c
Showing
3 changed files
with
253 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,217 @@ | ||
import yfinance as yf | ||
import pandas_ta as ta | ||
import numpy as np | ||
from sklearn.linear_model import LinearRegression | ||
import warnings | ||
import plotly.graph_objects as go | ||
from plotly.subplots import make_subplots | ||
|
||
|
||
warnings.simplefilter(action='ignore', category=FutureWarning) | ||
|
||
lr = LinearRegression() | ||
|
||
|
||
def data_get(ticker1, start1, end1): | ||
df1 = yf.download(ticker1, start=start1, end=end1, interval='1d') | ||
return df1 | ||
|
||
|
||
def data_process(df, column, split): | ||
percent_split = split | ||
row = int(len(np.array(df)) * percent_split) | ||
dataX = df.iloc[:row] | ||
dataY = df.iloc[row:] | ||
|
||
X = dataX.iloc[1:] | ||
Y = dataX.iloc[:-1] | ||
y = Y[[column]] | ||
|
||
X_test = dataY.iloc[1:] | ||
Y_test = dataY.iloc[:-1] | ||
y_test = Y_test[[column]] | ||
|
||
#print(len(np.array(X_test))) | ||
|
||
return X, y, X_test, y_test | ||
|
||
|
||
def neural_network(ticker, start, end, column, split): | ||
global lr | ||
df = data_get(ticker, start, end) | ||
|
||
CustomStrategy = ta.Strategy( | ||
name="Momo and Volatility", | ||
description="SMA 50,200, BBANDS, RSI, MACD and Volume SMA 20", | ||
ta=[ | ||
#{"kind": "sma", "length": 50}, | ||
#{"kind": "sma", "length": 200}, | ||
#{"kind": "bbands", "length": 20}, | ||
{"kind": "rsi"}, | ||
{"kind": "stoch"}, | ||
{"kind": "bbands"}, | ||
{"kind": "ema"}, | ||
{"kind": "ao"}, | ||
{"kind": "apo"}, | ||
{"kind": "brar"}, | ||
{"kind": "cci"}, | ||
{"kind": "ha"}, | ||
{"kind": "aberration"}, | ||
{"kind": "accbands"}, | ||
{"kind": "adx"}, | ||
{"kind": "bias"}, | ||
{"kind": "cmf"}, | ||
{"kind": "midprice"}, | ||
{"kind": "pvol"}, | ||
#{"kind": "macd", "fast": 8, "slow": 21}, | ||
#{"kind": "sma", "close": "volume", "length": 20, "prefix": "VOLUME"}, | ||
] | ||
) | ||
|
||
|
||
df.ta.strategy(CustomStrategy) #error here | ||
#print(df) | ||
df = df.dropna() | ||
#print(df) | ||
|
||
|
||
#print("__________________________________") | ||
|
||
#print(df) | ||
|
||
X, y, X_test, y_test = data_process(df, column, split) | ||
|
||
lr.fit(np.array(X), np.array(y)) | ||
|
||
a = lr.predict(np.array(X_test)) | ||
b = np.array(y_test) | ||
|
||
t = 0 | ||
|
||
# Accuracy Calculator | ||
for z in range(len(a)): | ||
w = a[z] | ||
v = b[z] | ||
|
||
if z != 0: | ||
u = b[z - 1] | ||
if (w[0] < u[0] and v[0] < u[0]) or (w[0] > u[0] and v[0] > u[0]): | ||
t += 1 | ||
|
||
# Output Accuracy | ||
|
||
print(lr.score(np.array(X_test), np.array(y_test))) | ||
print("High Direction Accuracy: " + str(t / len(a) * 100) + "%") | ||
#print(df) | ||
return df, X, y, X_test, y_test | ||
|
||
|
||
def graph(df,X, y, X_test, y_test,ticker ): | ||
|
||
fig = make_subplots(rows=2, cols=1, | ||
shared_xaxes=True, | ||
vertical_spacing=0.02, | ||
) | ||
|
||
fig.add_trace( | ||
go.Candlestick(x=df.axes[0].tolist(), open=df['open'], high=df['high'], low=df['low'], close=df['close'], | ||
increasing_line_color='rgb(0,255,0)', decreasing_line_color='rgb(255,0,0)')) | ||
|
||
z1 = lr.predict(X_test) | ||
z2 = X_test.axes[0].tolist() | ||
z3 = np.array(y_test) | ||
|
||
#print(z1) | ||
#print(z3) | ||
print(z2) | ||
for k in range(len(z1)-1): | ||
|
||
w=z1[k] | ||
v=z3[k] | ||
|
||
if k != 0: | ||
u = z3[k - 1] | ||
print(w[0],u[0],v[0]) | ||
if (w[0] < u[0] and v[0] < u[0]): | ||
fig.add_shape(type="line", x0=str(z2[k]).split()[0], x1=str(z2[k]).split()[0], y0=0.2, y1=0, | ||
line=dict(color="rgb(255,0,0)", width=2)) | ||
elif (w[0] > u[0] and v[0] > u[0]): | ||
fig.add_shape(type="line", x0=str(z2[k]).split()[0], x1=str(z2[k]).split()[0], y0=0.2, y1=0, | ||
line=dict(color="rgb(0,255,0)", width=2)) | ||
|
||
|
||
''' | ||
if z3[k][0]-z3[k+1][0] <= 0 and z3[k][0]-z1[k]<=0: #if positive | ||
fig.add_shape(type="line", x0=str(z2[k]).split()[0], x1=str(z2[k]).split()[0], y0=0.2, y1=0, | ||
line=dict(color="rgb(0,255,0)", width=2)) | ||
else: | ||
fig.add_shape(type="line", x0=str(z2[k]).split()[0], x1=str(z2[k]).split()[0], y0=0.2, y1=0, | ||
line=dict(color="rgb(255,0,0)", width=2)) | ||
''' | ||
|
||
|
||
|
||
''' | ||
if z1[k][0] >= z3[k][0]: | ||
fig.add_shape(type="line", x0=str(z2[k]).split()[0], x1=str(z2[k]).split()[0], y0=0.2, y1=0, | ||
line=dict(color="rgb(0,255,0)", width=2)) | ||
else: | ||
fig.add_shape(type="line", x0=str(z2[k]).split()[0], x1=str(z2[k]).split()[0], y0=0.2, y1=0, | ||
line=dict(color="rgb(255,0,0)", width=2)) | ||
''' | ||
|
||
fig.update_layout( | ||
title=ticker, | ||
yaxis_title='Price', | ||
xaxis_title='Date', | ||
font=dict( | ||
family='Courier New, monospace', | ||
size=10, | ||
color='#7f7f7f' | ||
), | ||
titlefont=dict( | ||
family='Courier New, monospace', | ||
size=18, | ||
color='#7f7f7f' | ||
), | ||
height=700, | ||
paper_bgcolor='rgb(0,0,0)', | ||
plot_bgcolor='rgb(0,0,0)' | ||
) | ||
|
||
fig.update_shapes(dict(xref='x', yref='paper')) | ||
fig.update_yaxes(automargin=True) | ||
|
||
import dash | ||
import dash_core_components as dcc | ||
import dash_html_components as html | ||
|
||
app = dash.Dash() | ||
app.layout = html.Div([ | ||
dcc.Graph(figure=fig) | ||
]) | ||
|
||
print("RUN SERVER") | ||
fig.show() | ||
#return app.run_server(port=5000,debug=True, use_reloader=False) | ||
|
||
#return fig.show() | ||
|
||
|
||
|
||
def run(): | ||
#if __name__ == '__main__': | ||
try: | ||
ticker = input("Ticker: ") | ||
|
||
vc,X, y, X_test, y_test = neural_network(ticker, "2017-01-01", "2020-11-26", "close", 0.95) | ||
#return graph(vc,X, y, X_test, y_test,ticker ) | ||
graph(vc, X, y, X_test, y_test, ticker) | ||
except ValueError: | ||
pass | ||
#return "hi" | ||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
from flask import Flask, render_template | ||
import NN | ||
|
||
app = Flask(__name__) | ||
|
||
@app.route('/') | ||
def index(): | ||
return render_template('index.html') | ||
|
||
@app.route('/my-link/') | ||
def my_link(): | ||
|
||
print ('I got clicked!') | ||
NN.run() | ||
#return 'Click.' | ||
|
||
if __name__ == '__main__': | ||
print("__name__ == __main__") | ||
app.run(debug=True) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
from flask import request | ||
from flask import Flask | ||
|
||
app = Flask(__name__) | ||
|
||
|
||
def shutdown_server(): | ||
func = request.environ.get('werkzeug.server.shutdown') | ||
if func is None: | ||
raise RuntimeError('Not running with the Werkzeug Server') | ||
func() | ||
|
||
@app.route('/shutdown', methods=['POST']) | ||
|
||
def shutdown(): | ||
shutdown_server() | ||
return 'Server shutting down...' |