Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Equirect facetype docs and rounding #36

Merged
merged 5 commits into from
Dec 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 3 additions & 7 deletions py360convert/c2e.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,12 +156,8 @@ def c2e(
coor_x_norm = (np.clip(coor_x, -0.5, 0.5) + 0.5) * face_w
coor_y_norm = (np.clip(coor_y, -0.5, 0.5) + 0.5) * face_w

equirec = np.stack(
[
sample_cubefaces(cube_faces[..., i], tp, coor_y_norm, coor_x_norm, order=order)
for i in range(cube_faces.shape[3])
],
axis=-1,
)
equirec = np.empty((h, w, cube_faces.shape[3]))
for i in range(cube_faces.shape[3]):
equirec[..., i] = sample_cubefaces(cube_faces[..., i], tp, coor_y_norm, coor_x_norm, order=order)

return equirec[..., 0] if squeeze else equirec
192 changes: 121 additions & 71 deletions py360convert/utils.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,11 @@
from collections.abc import Sequence
from enum import IntEnum
from typing import Any, Literal, Optional, TypeVar, Union

import numpy as np
from numpy.typing import NDArray
from scipy.ndimage import map_coordinates
from scipy.spatial.transform import Rotation

_mode_to_order = {
"nearest": 0,
Expand Down Expand Up @@ -38,6 +40,23 @@
DType = TypeVar("DType", bound=np.generic, covariant=True)


class Face(IntEnum):
"""Face type indexing for numpy vectorization."""

FRONT = 0
RIGHT = 1
BACK = 2
LEFT = 3
UP = 4
DOWN = 5


class Dim(IntEnum):
X = 0
Y = 1
Z = 2


def mode_to_order(mode: InterpolationMode) -> int:
"""Convert a human-friendly interpolation string to integer equivalent.

Expand All @@ -56,6 +75,11 @@ def mode_to_order(mode: InterpolationMode) -> int:
raise ValueError(f'Unknown mode "{mode}".') from None


def slice_chunk(index: int, width: int):
start = index * width
return slice(start, start + width)


def xyzcube(face_w: int) -> NDArray[np.float32]:
"""
Return the xyz coordinates of the unit cube in [F R B L U D] format.
Expand All @@ -78,30 +102,32 @@ def xyzcube(face_w: int) -> NDArray[np.float32]:
rng = np.linspace(-0.5, 0.5, num=face_w, dtype=np.float32)
grid = np.stack(np.meshgrid(rng, -rng), -1)

def face_slice(index):
return slice_chunk(index, face_w)

# Front face (z = 0.5)
out[:, 0 * face_w : 1 * face_w, [0, 1]] = grid
out[:, 0 * face_w : 1 * face_w, 2] = 0.5
out[:, face_slice(Face.FRONT), [Dim.X, Dim.Y]] = grid
out[:, face_slice(Face.FRONT), Dim.Z] = 0.5

# Right face (x = 0.5)
out[:, 1 * face_w : 2 * face_w, [2, 1]] = grid
out[:, 1 * face_w : 2 * face_w, [2, 1]] = np.flip(grid, axis=1)
out[:, 1 * face_w : 2 * face_w, 0] = 0.5
out[:, face_slice(Face.RIGHT), [Dim.Z, Dim.Y]] = np.flip(grid, axis=1)
out[:, face_slice(Face.RIGHT), Dim.X] = 0.5

# Back face (z = -0.5)
out[:, 2 * face_w : 3 * face_w, [0, 1]] = np.flip(grid, axis=1)
out[:, 2 * face_w : 3 * face_w, 2] = -0.5
out[:, face_slice(Face.BACK), [Dim.X, Dim.Y]] = np.flip(grid, axis=1)
out[:, face_slice(Face.BACK), Dim.Z] = -0.5

# Left face (x = -0.5)
out[:, 3 * face_w : 4 * face_w, [2, 1]] = grid
out[:, 3 * face_w : 4 * face_w, 0] = -0.5
out[:, face_slice(Face.LEFT), [Dim.Z, Dim.Y]] = grid
out[:, face_slice(Face.LEFT), Dim.X] = -0.5

# Up face (y = 0.5)
out[:, 4 * face_w : 5 * face_w, [0, 2]] = np.flip(grid, axis=0)
out[:, 4 * face_w : 5 * face_w, 1] = 0.5
out[:, face_slice(Face.UP), [Dim.X, Dim.Z]] = np.flip(grid, axis=0)
out[:, face_slice(Face.UP), Dim.Y] = 0.5

# Down face (y = -0.5)
out[:, 5 * face_w : 6 * face_w, [0, 2]] = grid
out[:, 5 * face_w : 6 * face_w, 1] = -0.5
out[:, face_slice(Face.DOWN), [Dim.X, Dim.Z]] = grid
out[:, face_slice(Face.DOWN), Dim.Y] = -0.5

return out

Expand All @@ -125,6 +151,8 @@ def equirect_facetype(h: int, w: int) -> NDArray[np.int32]:
* 4 - up
* 5 - down

See ``Face``.

Example:

>>> equirect_facetype(8, 12)
Expand Down Expand Up @@ -158,12 +186,14 @@ def equirect_facetype(h: int, w: int) -> NDArray[np.int32]:
mask = np.zeros((h, w // 4), np.bool_)
idx = np.linspace(-np.pi, np.pi, w // 4) / 4
idx = np.round(h / 2 - np.arctan(np.cos(idx)) * h / np.pi).astype(np.int32)
for i, j in enumerate(idx):
mask[:j, i] = True
mask = np.roll(np.concatenate([mask] * 4, 1), 3 * w // 8, 1)

tp[mask] = 4
tp[np.flip(mask, 0)] = 5
row_idx = np.arange(len(mask))[:, None]
mask[row_idx < idx[None, :]] = True

mask = np.roll(np.tile(mask, (1, 4)), 3 * w // 8, 1)

tp[mask] = Face.UP
tp[np.flip(mask, 0)] = Face.DOWN

return tp.astype(np.int32)

Expand All @@ -176,8 +206,8 @@ def xyzpers(h_fov: float, v_fov: float, u: float, v: float, out_hw: tuple[int, i
x_rng = np.linspace(-x_max, x_max, num=out_hw[1], dtype=np.float32)
y_rng = np.linspace(-y_max, y_max, num=out_hw[0], dtype=np.float32)
out[..., :2] = np.stack(np.meshgrid(x_rng, -y_rng), -1)
Rx = rotation_matrix(v, [1, 0, 0])
Ry = rotation_matrix(u, [0, 1, 0])
Rx = rotation_matrix(v, Dim.X)
Ry = rotation_matrix(u, Dim.Y)
Ri = rotation_matrix(in_rot, np.array([0, 0, 1.0]).dot(Rx).dot(Ry))

return out.dot(Rx).dot(Ry).dot(Ri)
Expand Down Expand Up @@ -277,44 +307,56 @@ def sample_equirec(e_img: NDArray[DType], coor_xy: NDArray, order: int) -> NDArr
def sample_cubefaces(
cube_faces: NDArray[DType], tp: NDArray, coor_y: NDArray, coor_x: NDArray, order: int
) -> NDArray[DType]:
cube_faces = cube_faces.copy()
# cube_faces[1] = np.flip(cube_faces[1], 1)
# cube_faces[2] = np.flip(cube_faces[2], 1)
# cube_faces[4] = np.flip(cube_faces[4], 0)

# Pad up down
pad_ud = np.zeros((6, 2, cube_faces.shape[2]), dtype=cube_faces.dtype)
pad_ud[0, 0] = cube_faces[5, 0, :]
pad_ud[0, 1] = cube_faces[4, -1, :]
pad_ud[1, 0] = cube_faces[5, :, -1]
pad_ud[1, 1] = cube_faces[4, ::-1, -1]
pad_ud[2, 0] = cube_faces[5, -1, ::-1]
pad_ud[2, 1] = cube_faces[4, 0, ::-1]
pad_ud[3, 0] = cube_faces[5, ::-1, 0]
pad_ud[3, 1] = cube_faces[4, :, 0]
pad_ud[4, 0] = cube_faces[0, 0, :]
pad_ud[4, 1] = cube_faces[2, 0, ::-1]
pad_ud[5, 0] = cube_faces[2, -1, ::-1]
pad_ud[5, 1] = cube_faces[0, -1, :]
cube_faces = np.concatenate([cube_faces, pad_ud], 1, dtype=cube_faces.dtype)

# Pad left right
pad_lr = np.zeros((6, cube_faces.shape[1], 2), dtype=cube_faces.dtype)
pad_lr[0, :, 0] = cube_faces[1, :, 0]
pad_lr[0, :, 1] = cube_faces[3, :, -1]
pad_lr[1, :, 0] = cube_faces[2, :, 0]
pad_lr[1, :, 1] = cube_faces[0, :, -1]
pad_lr[2, :, 0] = cube_faces[3, :, 0]
pad_lr[2, :, 1] = cube_faces[1, :, -1]
pad_lr[3, :, 0] = cube_faces[0, :, 0]
pad_lr[3, :, 1] = cube_faces[2, :, -1]
pad_lr[4, 1:-1, 0] = cube_faces[1, 0, ::-1]
pad_lr[4, 1:-1, 1] = cube_faces[3, 0, :]
pad_lr[5, 1:-1, 0] = cube_faces[1, -2, :]
pad_lr[5, 1:-1, 1] = cube_faces[3, -2, ::-1]
cube_faces = np.concatenate([cube_faces, pad_lr], 2, dtype=cube_faces.dtype)

return map_coordinates(cube_faces, [tp, coor_y, coor_x], order=order, mode="wrap") # pyright: ignore[reportReturnType]
"""Sample cube faces.

Parameters
----------
cube_faces: numpy.ndarray
(6, H, W) Cube faces.
tp: numpy.ndarray
(H, W) facetype image from ``equirect_facetype``.
coor_y: numpy.ndarray
(H, W) Y coordinates to sample.
coor_x: numpy.ndarray
(H, W) X coordinates to sample.
order: int
The order of the spline interpolation. See ``scipy.ndimage.map_coordinates``.
"""
ABOVE = (0, slice(None))
BELOW = (-1, slice(None))
LEFT = (slice(None), 0)
RIGHT = (slice(None), -1)
padded = np.pad(cube_faces, ((0, 0), (1, 1), (1, 1)), mode="constant")

# Pad above/below
padded[Face.FRONT][ABOVE] = padded[Face.UP, -2, :]
padded[Face.FRONT][BELOW] = padded[Face.DOWN, 1, :]
padded[Face.RIGHT][ABOVE] = padded[Face.UP, ::-1, -2]
padded[Face.RIGHT][BELOW] = padded[Face.DOWN, :, -2]
padded[Face.BACK][ABOVE] = padded[Face.UP, 1, ::-1]
padded[Face.BACK][BELOW] = padded[Face.DOWN, -2, ::-1]
padded[Face.LEFT][ABOVE] = padded[Face.UP, :, 1]
padded[Face.LEFT][BELOW] = padded[Face.DOWN, ::-1, 1]
padded[Face.UP][ABOVE] = padded[Face.BACK, 1, ::-1]
padded[Face.UP][BELOW] = padded[Face.FRONT, 1, :]
padded[Face.DOWN][ABOVE] = padded[Face.FRONT, -2, :]
padded[Face.DOWN][BELOW] = padded[Face.BACK, -2, ::-1]

# Pad left/right
padded[Face.FRONT][LEFT] = padded[Face.LEFT, :, -2]
padded[Face.FRONT][RIGHT] = padded[Face.RIGHT, :, 1]
padded[Face.RIGHT][LEFT] = padded[Face.FRONT, :, -2]
padded[Face.RIGHT][RIGHT] = padded[Face.BACK, :, 1]
padded[Face.BACK][LEFT] = padded[Face.RIGHT, :, -2]
padded[Face.BACK][RIGHT] = padded[Face.LEFT, :, 1]
padded[Face.LEFT][LEFT] = padded[Face.BACK, :, -2]
padded[Face.LEFT][RIGHT] = padded[Face.FRONT, :, 1]
padded[Face.UP][LEFT] = padded[Face.LEFT, 1, :]
padded[Face.UP][RIGHT] = padded[Face.RIGHT, 1, ::-1]
padded[Face.DOWN][LEFT] = padded[Face.LEFT, -2, ::-1]
padded[Face.DOWN][RIGHT] = padded[Face.RIGHT, -2, :]

return map_coordinates(padded, [tp, coor_y + 1, coor_x + 1], order=order) # pyright: ignore[reportReturnType]


def cube_h2list(cube_h: NDArray[DType]) -> list[NDArray[DType]]:
Expand Down Expand Up @@ -359,10 +401,16 @@ def cube_h2dice(cube_h: NDArray[DType]) -> NDArray[DType]:
cube_dice = np.zeros((w * 3, w * 4, cube_h.shape[2]), dtype=cube_h.dtype)
cube_list = cube_h2list(cube_h)
# Order: F R B L U D
# ┌────┐
# │ U │
# ┌────┼────┼────┬────┐
# │ L │ F │ R │ B │
# └────┼────┼────┴────┘
# │ D │
# └────┘
sxy = [(1, 1), (2, 1), (3, 1), (0, 1), (1, 0), (1, 2)]
for i, (sx, sy) in enumerate(sxy):
face = cube_list[i]
cube_dice[sy * w : (sy + 1) * w, sx * w : (sx + 1) * w] = face
for (sx, sy), face in zip(sxy, cube_list):
cube_dice[slice_chunk(sy, w), slice_chunk(sx, w)] = face
return cube_dice


Expand All @@ -374,22 +422,24 @@ def cube_dice2h(cube_dice: NDArray[DType]) -> NDArray[DType]:
raise ValueError(f'Dice width must be 4 "faces" (4x{w}={4*w}) wide.')
cube_h = np.zeros((w, w * 6, cube_dice.shape[2]), dtype=cube_dice.dtype)
# Order: F R B L U D
# ┌────┐
# │ U │
# ┌────┼────┼────┬────┐
# │ L │ F │ R │ B │
# └────┼────┼────┴────┘
# │ D │
# └────┘
sxy = [(1, 1), (2, 1), (3, 1), (0, 1), (1, 0), (1, 2)]
for i, (sx, sy) in enumerate(sxy):
face = cube_dice[sy * w : (sy + 1) * w, sx * w : (sx + 1) * w]
cube_h[:, i * w : (i + 1) * w] = face
cube_h[:, slice_chunk(i, w)] = cube_dice[slice_chunk(sy, w), slice_chunk(sx, w)]
return cube_h


def rotation_matrix(rad: float, ax: Union[NDArray, Sequence]):
def rotation_matrix(rad: float, ax: Union[int, NDArray, Sequence]):
if isinstance(ax, int):
ax = (np.arange(3) == ax).astype(float)
ax = np.array(ax)
if ax.shape != (3,):
raise ValueError(f"ax must be shape (3,); got {ax.shape}")
ax = ax / np.sqrt((ax**2).sum())
R = np.diag([np.cos(rad)] * 3)
R = R + np.outer(ax, ax) * (1.0 - np.cos(rad))

ax = ax * np.sin(rad)
R = R + np.array([[0, -ax[2], ax[1]], [ax[2], 0, -ax[0]], [-ax[1], ax[0], 0]])

R = Rotation.from_rotvec(rad * ax).as_matrix()
return R
Loading