Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions 1050Actors&Directors.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
import pandas as pd

def actors_and_directors(actor_director: pd.DataFrame) -> pd.DataFrame:
result = actor_director.groupby(['actor_id', 'director_id']).size().reset_index(name='cnt')
result = result[(result['cnt'] > 2)]
# print((result))
return result[['actor_id', 'director_id']]
10 changes: 10 additions & 0 deletions 1484GroupSoldProductsByDate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
import pandas as pd

def categorize_products(activities: pd.DataFrame) -> pd.DataFrame:
grouped = activities.groupby(['sell_date'])
df1 = grouped.agg(
num_sold = ('product','nunique'),
products = ( 'product',lambda x: ','.join(sorted(set(x))))
).reset_index()
# print(df1)
return df1
32 changes: 32 additions & 0 deletions 1693DailyLeadsPartners.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
import pandas as pd

def daily_leads_and_partners(daily_sales: pd.DataFrame) -> pd.DataFrame:
group = daily_sales.groupby(['date_id', 'make_name'])
result = group.agg(
unique_leads=('lead_id', 'nunique'),
unique_partners=('partner_id', 'nunique')
).reset_index()
return result
# dict = {}
# for i in range(len(daily_sales)):
# dateid = daily_sales['date_id'][i]
# make = daily_sales['make_name'][i]
# leadid = daily_sales['lead_id'][i]
# partnerid = daily_sales['partner_id'][i]
# keytup = (dateid, make)
# if keytup not in dict:
# dict[keytup] = []
# (dict[keytup]).append({leadid})
# (dict[keytup]).append({partnerid})
# else:
# (dict[keytup])[0].add(leadid)
# (dict[keytup])[1].add(partnerid)
# # print(dict)
# result = []
# for key, value in dict.items():
# result.append([key[0], key[1] , len(value[0]), len(value[1])])
# # print(result)

# df = pd.DataFrame(result, columns = ['date_id', 'make_name', 'unique_leads', 'unique_partners'])
# return df