Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 60 additions & 0 deletions S30_Pandas_04.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
# Pandas_04

# 177. Nth Highest Salary_Solution_Q1

import pandas as pd

def nth_highest_salary(employee: pd.DataFrame, N: int) -> pd.DataFrame:

dist = employee.drop_duplicates(subset='salary')
dist['rnk'] = dist['salary'].rank(method='dense', ascending=False)
ans = dist[dist.rnk == N][['salary']]
if not len(ans):
return pd.DataFrame({f'getNthHighestSalary({N})': [None]})
ans = ans.rename(columns={'salary':f'getNthHighestSalary({N})'})
return ans

#Alternative1

import pandas as pd

def nth_highest_salary(employee: pd.DataFrame, N: int) -> pd.DataFrame:
result_set = set()
for i in range(len(employee)):
salary = employee['salary'][i]
result_set.add(salary)
result= []
for element in result_set:
result.append(element)
result.sort(reverse =True)

if N > len(result) or N <= 0:
return pd.DataFrame({f'getNthHighestSalary({N})' : [None]})

return pd.DataFrame({f'getNthHighestSalary({N})' : [result[N-1]]})

#Alternative2

import pandas as pd

def nth_highest_salary(employee: pd.DataFrame, N: int) -> pd.DataFrame:
df= employee[['salary']].drop_duplicates()
if N > len(df) or N <= 0:
return pd.DataFrame({f'getNthHighestSalary({N})' : [None]})

return df.sort_values('salary', ascending = False).head(N).tail(1)[['salary']].rename(columns ={'salary':f'getNthHighestSalary({N})'})

______________________________________________________________________________________________________________________________________

# 176. Second Highest Salary_Solution_Q2

import pandas as pd

def second_highest_salary(employee: pd.DataFrame) -> pd.DataFrame:
employee = employee.drop_duplicates(["salary"])
if len(employee["salary"].unique()) < 2:
return pd.DataFrame({"SecondHighestSalary": [np.NaN]})
employee = employee.sort_values("salary", ascending=False)
employee.drop("id", axis=1, inplace=True)
employee.rename({"salary": "SecondHighestSalary"}, axis=1, inplace=True)
return employee.head(2).tail(1)