-
Notifications
You must be signed in to change notification settings - Fork 52
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
617 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,3 @@ | ||
capture.yaml | ||
powerset.yaml | ||
gated-paddock.yaml |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,257 @@ | ||
def elif = \t. \then. \else. {if t then else} end | ||
def else = \t. t end | ||
|
||
// modulus function (%) | ||
def mod : int -> int -> int = \i. \m. | ||
i - m * (i / m) | ||
end | ||
|
||
def doN = \n. \f. if (n > 0) {f; doN (n - 1) f} {}; end; | ||
|
||
def until = \p. \c. q <- p; if q {} {c; until p c} end; | ||
def while = \p. until (x <- p; return $ not x) end; | ||
|
||
def isDivisibleBy = \dividend. \divisor. | ||
(dividend / divisor) * divisor == dividend; | ||
end; | ||
|
||
def isEven = \x. | ||
isDivisibleBy x 2 | ||
end; | ||
|
||
/** | ||
Performs a right bitshift of "x" by "n" places | ||
*/ | ||
def shiftRight = \x. \n. | ||
x / (2^n); | ||
end; | ||
|
||
/** | ||
Performs a left bitshift of "x" by "n" places | ||
*/ | ||
def shiftLeft = \x. \n. | ||
x * (2^n); | ||
end; | ||
|
||
/** | ||
Checks whether the bit at index "idx" is set in the "bitmask". | ||
zero-based indexing; 0 is the LSB. | ||
*/ | ||
def isBitSet = \bitmask. \idx. | ||
not $ isEven $ shiftRight bitmask idx; | ||
end; | ||
|
||
/** | ||
Tests whether only a single bit is set in the bitmask. | ||
Aborts early with 'false' if a second bit is detected. | ||
*/ | ||
def exactlyOneBit = \foundOneBit. \bitmask. | ||
if (bitmask == 0) { | ||
foundOneBit; | ||
} { | ||
let bitIsSet = not $ isEven bitmask in | ||
if (foundOneBit && bitIsSet) { | ||
false; | ||
} { | ||
exactlyOneBit (foundOneBit || bitIsSet) $ bitmask / 2; | ||
} | ||
} | ||
end; | ||
|
||
/** Teleports to a new location to execute a function | ||
then returns to the original location before | ||
returning the functions output value. | ||
*/ | ||
def atLocation = \newLoc. \f. | ||
prevLoc <- whereami; | ||
teleport self newLoc; | ||
retval <- f; | ||
teleport self prevLoc; | ||
return retval; | ||
end; | ||
|
||
def placeSand = | ||
let item = "sand" in | ||
create item; | ||
place item; | ||
move; | ||
end; | ||
|
||
/** | ||
Repeatedly generate a random number until | ||
we find one that's not in the bitmask. | ||
*/ | ||
def getUnusedRandom = \maxval. \bitmask. | ||
nextRandomVal <- random maxval; | ||
if (isBitSet bitmask nextRandomVal) { | ||
getUnusedRandom maxval bitmask; | ||
} { | ||
return nextRandomVal; | ||
} | ||
end; | ||
|
||
def getEntName = \idx. | ||
if (idx == 1) { | ||
"grape" | ||
} $ elif (idx == 2) { | ||
"lemon" | ||
} $ elif (idx == 3) { | ||
"apple" | ||
} $ elif (idx == 4) { | ||
"blueberry" | ||
} $ elif (idx == 5) { | ||
"watermelon" | ||
} $ elif (idx == 6) { | ||
"orange" | ||
} $ else { | ||
"dragonfruit" | ||
} | ||
end; | ||
|
||
def getMissingBitRecursive = \bitmask. \idx. | ||
if (idx > 0) { | ||
if (isEven bitmask) { | ||
idx | ||
} { | ||
getMissingBitRecursive (bitmask / 2) $ idx - 1; | ||
} | ||
} { | ||
// The MSB was the missing bit. | ||
0; | ||
} | ||
end; | ||
|
||
/** | ||
Returns the index of the right-most bit that is zero. | ||
*/ | ||
def getMissingBit = \bitmask. \maxIdx. | ||
let val = getMissingBitRecursive bitmask maxIdx in | ||
maxIdx - val; | ||
end; | ||
|
||
/** | ||
Use the `random` function to generate a random permuation of `n` contiguous values. | ||
Uses a bitmask to ensure uniqueness. | ||
Fisher-Yates would be more efficient, but requires a physical array. | ||
*/ | ||
def naiveRandomStack = \valueFunc. \maxval. \bitmask. \n. | ||
val <- if (n > 1) { | ||
nextRandomVal <- getUnusedRandom maxval bitmask; | ||
|
||
// Recursion bug workaround (see #1032): | ||
let blahNextRandomVal = nextRandomVal in | ||
|
||
let newBitmask = bitmask + shiftLeft 1 nextRandomVal in | ||
naiveRandomStack valueFunc maxval newBitmask $ n - 1; | ||
return blahNextRandomVal; | ||
} { | ||
// We're at the peak of the stack. | ||
// Now we unwind it. | ||
|
||
// Saves some time in generating the last number by inferring the | ||
// only remaining possible choice. | ||
let missingBit = getMissingBit bitmask maxval in | ||
return missingBit; | ||
}; | ||
valueFunc val; | ||
end; | ||
|
||
def placeThing = \entIdx. | ||
let entName = getEntName entIdx in | ||
create entName; | ||
place entName; | ||
end; | ||
|
||
def placeEntsForBits = \bitmask. \bitIndex. | ||
if (isBitSet bitmask bitIndex) { | ||
placeThing bitIndex; | ||
move; | ||
} {}; | ||
end; | ||
|
||
def columnFunc = \exclusionValue. \inputCardinality. \x. | ||
if (x != 0 && x != exclusionValue && not (exactlyOneBit false x)) { | ||
naiveRandomStack (placeEntsForBits x) inputCardinality 0 inputCardinality; | ||
myloc <- whereami; | ||
teleport self (fst myloc + 1, 0); | ||
} {}; | ||
end; | ||
|
||
def makeSandRow = \length. | ||
turn east; | ||
atLocation (0, -1) $ doN length placeSand; | ||
end; | ||
|
||
def chooseExclusionValue = \powersetCardinality. | ||
|
||
// For cardinality 32, for example, the value of "r" | ||
// will be between 0 and 30, inclusive. | ||
r <- random $ powersetCardinality - 1; | ||
|
||
// We offset by one so as not to exclude zero. | ||
// So the exclusion value is now between | ||
// 1 and 31, inclusive. | ||
let value = r + 1 in | ||
|
||
if (exactlyOneBit false value) { | ||
chooseExclusionValue powersetCardinality; | ||
} { | ||
return value; | ||
} | ||
end; | ||
|
||
/** | ||
"inputCardinality" is the number of distinct entities | ||
*/ | ||
def setup = \inputCardinality. | ||
let powersetCardinality = 2^inputCardinality in | ||
makeSandRow $ powersetCardinality - (1 + inputCardinality); | ||
|
||
turn north; | ||
move; | ||
exclusionValue <- chooseExclusionValue powersetCardinality; | ||
naiveRandomStack (columnFunc exclusionValue inputCardinality) powersetCardinality 0 powersetCardinality; | ||
return exclusionValue; | ||
end; | ||
|
||
/** | ||
One-based ordinal of the item. | ||
*/ | ||
def getOrdinal : text -> cmd int = \item. | ||
count item; | ||
end; | ||
|
||
def checkSolutionSum = \runningSum. | ||
maybeItem <- scan down; | ||
case maybeItem (\_. return runningSum) (\item. | ||
// The bell is the only other item we can place in this | ||
// scenario besides the fruits. | ||
if (item != "bell") { | ||
theOrdinal <- getOrdinal item; | ||
let binaryValue = shiftLeft 1 $ theOrdinal - 1 in | ||
move; | ||
checkSolutionSum $ binaryValue + runningSum; | ||
} {return runningSum}; | ||
); | ||
end; | ||
|
||
def waitForFirstPlacement = | ||
watch down; | ||
wait 1000; | ||
emptyhere <- isempty; | ||
if emptyhere {waitForFirstPlacement} {}; | ||
end; | ||
|
||
def go = \distinctCount. | ||
exclusionValue <- instant $ setup distinctCount; | ||
give base "bell"; | ||
|
||
waitForFirstPlacement; | ||
while (as base {has "bell"}) $ wait 2; | ||
theSum <- checkSolutionSum 0; | ||
let sentinelItem = if (exclusionValue == theSum) {"bit (1)"} {"bit (0)"} in | ||
create sentinelItem; | ||
end; | ||
|
||
go 7; |
Oops, something went wrong.