Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

powerset scenario #1342

Merged
merged 2 commits into from
Jun 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions data/scenarios/Challenges/Ranching/00-ORDER.txt
Original file line number Diff line number Diff line change
@@ -1,2 +1,3 @@
capture.yaml
powerset.yaml
gated-paddock.yaml
257 changes: 257 additions & 0 deletions data/scenarios/Challenges/Ranching/_powerset/setup.sw
Original file line number Diff line number Diff line change
@@ -0,0 +1,257 @@
def elif = \t. \then. \else. {if t then else} end
def else = \t. t end

// modulus function (%)
def mod : int -> int -> int = \i. \m.
i - m * (i / m)
end

def doN = \n. \f. if (n > 0) {f; doN (n - 1) f} {}; end;

def until = \p. \c. q <- p; if q {} {c; until p c} end;
def while = \p. until (x <- p; return $ not x) end;

def isDivisibleBy = \dividend. \divisor.
(dividend / divisor) * divisor == dividend;
end;

def isEven = \x.
isDivisibleBy x 2
end;

/**
Performs a right bitshift of "x" by "n" places
*/
def shiftRight = \x. \n.
x / (2^n);
end;

/**
Performs a left bitshift of "x" by "n" places
*/
def shiftLeft = \x. \n.
x * (2^n);
end;

/**
Checks whether the bit at index "idx" is set in the "bitmask".
zero-based indexing; 0 is the LSB.
*/
def isBitSet = \bitmask. \idx.
not $ isEven $ shiftRight bitmask idx;
end;

/**
Tests whether only a single bit is set in the bitmask.
Aborts early with 'false' if a second bit is detected.
*/
def exactlyOneBit = \foundOneBit. \bitmask.
if (bitmask == 0) {
foundOneBit;
} {
let bitIsSet = not $ isEven bitmask in
if (foundOneBit && bitIsSet) {
false;
} {
exactlyOneBit (foundOneBit || bitIsSet) $ bitmask / 2;
}
}
end;

/** Teleports to a new location to execute a function
then returns to the original location before
returning the functions output value.
*/
def atLocation = \newLoc. \f.
prevLoc <- whereami;
teleport self newLoc;
retval <- f;
teleport self prevLoc;
return retval;
end;

def placeSand =
let item = "sand" in
create item;
place item;
move;
end;

/**
Repeatedly generate a random number until
we find one that's not in the bitmask.
*/
def getUnusedRandom = \maxval. \bitmask.
nextRandomVal <- random maxval;
if (isBitSet bitmask nextRandomVal) {
getUnusedRandom maxval bitmask;
} {
return nextRandomVal;
}
end;

def getEntName = \idx.
if (idx == 1) {
"grape"
} $ elif (idx == 2) {
"lemon"
} $ elif (idx == 3) {
"apple"
} $ elif (idx == 4) {
"blueberry"
} $ elif (idx == 5) {
"watermelon"
} $ elif (idx == 6) {
"orange"
} $ else {
"dragonfruit"
}
end;

def getMissingBitRecursive = \bitmask. \idx.
if (idx > 0) {
if (isEven bitmask) {
idx
} {
getMissingBitRecursive (bitmask / 2) $ idx - 1;
}
} {
// The MSB was the missing bit.
0;
}
end;

/**
Returns the index of the right-most bit that is zero.
*/
def getMissingBit = \bitmask. \maxIdx.
let val = getMissingBitRecursive bitmask maxIdx in
maxIdx - val;
end;

/**
Use the `random` function to generate a random permuation of `n` contiguous values.
Uses a bitmask to ensure uniqueness.
Fisher-Yates would be more efficient, but requires a physical array.
*/
def naiveRandomStack = \valueFunc. \maxval. \bitmask. \n.
val <- if (n > 1) {
nextRandomVal <- getUnusedRandom maxval bitmask;

// Recursion bug workaround (see #1032):
let blahNextRandomVal = nextRandomVal in

let newBitmask = bitmask + shiftLeft 1 nextRandomVal in
naiveRandomStack valueFunc maxval newBitmask $ n - 1;
return blahNextRandomVal;
} {
// We're at the peak of the stack.
// Now we unwind it.

// Saves some time in generating the last number by inferring the
// only remaining possible choice.
let missingBit = getMissingBit bitmask maxval in
return missingBit;
};
valueFunc val;
end;

def placeThing = \entIdx.
let entName = getEntName entIdx in
create entName;
place entName;
end;

def placeEntsForBits = \bitmask. \bitIndex.
if (isBitSet bitmask bitIndex) {
placeThing bitIndex;
move;
} {};
end;

def columnFunc = \exclusionValue. \inputCardinality. \x.
if (x != 0 && x != exclusionValue && not (exactlyOneBit false x)) {
naiveRandomStack (placeEntsForBits x) inputCardinality 0 inputCardinality;
myloc <- whereami;
teleport self (fst myloc + 1, 0);
} {};
end;

def makeSandRow = \length.
turn east;
atLocation (0, -1) $ doN length placeSand;
end;

def chooseExclusionValue = \powersetCardinality.

// For cardinality 32, for example, the value of "r"
// will be between 0 and 30, inclusive.
r <- random $ powersetCardinality - 1;

// We offset by one so as not to exclude zero.
// So the exclusion value is now between
// 1 and 31, inclusive.
let value = r + 1 in

if (exactlyOneBit false value) {
chooseExclusionValue powersetCardinality;
} {
return value;
}
end;

/**
"inputCardinality" is the number of distinct entities
*/
def setup = \inputCardinality.
let powersetCardinality = 2^inputCardinality in
makeSandRow $ powersetCardinality - (1 + inputCardinality);

turn north;
move;
exclusionValue <- chooseExclusionValue powersetCardinality;
naiveRandomStack (columnFunc exclusionValue inputCardinality) powersetCardinality 0 powersetCardinality;
return exclusionValue;
end;

/**
One-based ordinal of the item.
*/
def getOrdinal : text -> cmd int = \item.
count item;
end;

def checkSolutionSum = \runningSum.
maybeItem <- scan down;
case maybeItem (\_. return runningSum) (\item.
// The bell is the only other item we can place in this
// scenario besides the fruits.
if (item != "bell") {
theOrdinal <- getOrdinal item;
let binaryValue = shiftLeft 1 $ theOrdinal - 1 in
move;
checkSolutionSum $ binaryValue + runningSum;
} {return runningSum};
);
end;

def waitForFirstPlacement =
watch down;
wait 1000;
emptyhere <- isempty;
if emptyhere {waitForFirstPlacement} {};
end;

def go = \distinctCount.
exclusionValue <- instant $ setup distinctCount;
give base "bell";

waitForFirstPlacement;
while (as base {has "bell"}) $ wait 2;
theSum <- checkSolutionSum 0;
let sentinelItem = if (exclusionValue == theSum) {"bit (1)"} {"bit (0)"} in
create sentinelItem;
end;

go 7;
Loading