PyRates is a framework for neural modeling and simulations, developed by Richard Gast and Daniel Rose at the Max Planck Institute of Human Cognitive and Brain Sciences, Leipzig, Germany. It is an open-source project that everyone is welcome to contribute to.
- Different backends:
Numpy
for fast simulations of small- to medium-sized networks.Tensorflow
for efficient parallelization on GPUs/CPUs,Fortran
for parameter continuations. - Each model is internally represented by a
networkx
graph of nodes and edges, with the former representing the model units (i.e. single cells, cell populations, ...) and the latter the information transfer between them. In principle, this allows to implement any kind of dynamic neural system that can be expressed as a graph via PyRates. - Solutions of initial value problems via different numerical solvers (e.g. full interface to
scipy.integrate.solve_ivp
) - Parameter continuations and bifurcation analysis via PyAuto, an interface to
auto-07p
- Storage of solutions in
pandas.DataFrame
- Efficient parameter sweeps on single and multiple machines via the
grid_search
module - Model optimization via genetic algorithms
- Visualization of results via
seaborn
- Post-processing of simulation results via
scipy
andMNE Python
- The user has full control over the mathematical equations that nodes and edges are defined by.
- Model configuration and simulation can be done within a few lines of code.
- Various templates for rate-based population models are provided that can be used for neural network simulations imediatly.
PyRates can be installed via the pip
command. We recommend to use Anaconda
to create a new python environment with Python >= 3.6 and then simply run the following line from a terminal with the environment being activated:
pip install pyrates
You can install optional (non-default) packages by specifying one or more options in brackets, e.g.:
pip install pyrates[tf,plot]
Available options are tf
, plot
, proc
, cluster
, numba
and all
.
The latter includes all optional packages.
Furthermore, the option tests
includes all packages necessary to run tests found in the github repository.
Alternatively, it is possible to clone this repository and run one of the following lines from the directory in which the repository was cloned:
python setup.py install
or
pip install .[<options>]
Finally, a singularity container of the most recent version of this software can be found here. This container provides a stand-alone version of PyRates including all necessary Python tools to be run, independent of local operating systems. To be able to use this container, you need to install Singularity on your local machine first. Follow these instructions to install singularity and run scripts inside the PyRates container.
For a full API of PyRates, see https://pyrates.readthedocs.io/en/latest/. For examplary simulations and model configurations, please have a look at the jupyter notebooks provided in the documenation folder.
If you use this framework, please cite: Gast, R., Rose, D., Salomon, C., Möller, H. E., Weiskopf, N., & Knösche, T. R. (2019). PyRates-A Python framework for rate-based neural simulations. PloS one, 14(12), e0225900.
If you have questions, problems or suggestions regarding PyRates, please contact Richard Gast or Daniel Rose.