Skip to content

Unified Go interface for Language Model (LLM) providers. Simplifies LLM integration with flexible prompt management and common task functions.

License

Notifications You must be signed in to change notification settings

teilomillet/gollm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

gollm - Go Large Language Model

Gophers building a robot by Renee French

gollm is a Go package designed to help you build your own AI golems. Just as the mystical golem of legend was brought to life with sacred words, gollm empowers you to breathe life into your AI creations using the power of Large Language Models (LLMs). This package simplifies and streamlines interactions with various LLM providers, offering a unified, flexible, and powerful interface for AI engineers and developers to craft their own digital servants.

Documentation

Table of Contents

Key Features

  • Unified API for Multiple LLM Providers: Interact seamlessly with various providers, including OpenAI, Anthropic, Groq, Ollama, and OpenRouter. Easily switch between models like GPT-4, Claude, and Llama-3.1.
  • Easy Provider and Model Switching: Configure preferred providers and models with simple options.
  • Flexible Configuration Options: Customize using environment variables, code-based configuration, or configuration files.
  • Advanced Prompt Engineering: Craft sophisticated instructions to guide your AI's responses effectively.
  • Prompt Optimizer: Automatically refine and improve your prompts for better results, with support for custom metrics and different rating systems.
  • Memory Retention: Maintain context across multiple interactions for more coherent conversations.
  • Structured Output and Validation: Ensure outputs are consistent and reliable with JSON schema generation and validation.
  • Provider Comparison Tools: Test performance across different LLM providers and models for the same task.
  • High-Level AI Functions: Use pre-built functions like ChainOfThought for complex reasoning tasks.
  • Robust Error Handling and Retries: Built-in retry mechanisms to handle API rate limits and transient errors.
  • Extensible Architecture: Easily expand support for new LLM providers and features.

Supported Providers

gollm works with a variety of LLM providers:

  • OpenAI: GPT-4o, GPT-4, GPT-3.5 Turbo
  • Anthropic: Claude 3 (Opus, Sonnet, Haiku), Claude 2.1
  • Groq: Llama-3, Mixtral models with high-speed inference
  • Ollama: Local models support (Llama-3, Mistral, etc.)
  • Mistral: Mistral Large, Mistral Medium
  • OpenRouter: Access to multiple providers through a single API with:
    • Model fallback capabilities
    • Auto-routing between models
    • Prompt caching
    • Reasoning tokens
    • Provider routing preferences

Real-World Applications

gollm can handle a wide range of AI-powered tasks, including:

  • Content Creation Workflows: Generate research summaries, article ideas, and refined paragraphs.
  • Complex Reasoning Tasks: Use the ChainOfThought function to analyze complex problems step-by-step.
  • Structured Data Generation: Create and validate complex data structures with customizable JSON schemas.
  • Model Performance Analysis: Compare different models' performance for specific tasks.
  • Prompt Optimization: Automatically improve prompts for various tasks.
  • Mixture of Agents: Combine responses from multiple LLM providers.

Installation

go get github.com/teilomillet/gollm

Quick Start

Basic Usage

package main

import (
    "context"
    "fmt"
    "log"
    "os"

    "github.com/teilomillet/gollm"
)

func main() {
    // Load API key from environment variable
    apiKey := os.Getenv("OPENAI_API_KEY")
    if apiKey == "" {
        log.Fatalf("OPENAI_API_KEY environment variable is not set")
    }

    // Create a new LLM instance with custom configuration
    llm, err := gollm.NewLLM(
        gollm.SetProvider("openai"),
        gollm.SetModel("gpt-4o-mini"),
        gollm.SetAPIKey(apiKey),
        gollm.SetMaxTokens(200),
        gollm.SetMaxRetries(3),
        gollm.SetRetryDelay(time.Second*2),
        gollm.SetLogLevel(gollm.LogLevelInfo),
    )
    if err != nil {
        log.Fatalf("Failed to create LLM: %v", err)
    }

    ctx := context.Background()

    // Create a basic prompt
    prompt := gollm.NewPrompt("Explain the concept of 'recursion' in programming.")

    // Generate a response
    response, err := llm.Generate(ctx, prompt)
    if err != nil {
        log.Fatalf("Failed to generate text: %v", err)
    }
    fmt.Printf("Response:\n%s\n", response)
}

Quick Reference

Here's a quick reference guide for the most commonly used functions and options in the gollm package:

LLM Creation and Configuration

// Using OpenAI
llm, err := gollm.NewLLM(
    gollm.SetProvider("openai"),
    gollm.SetModel("gpt-4"),
    gollm.SetAPIKey("your-api-key"),
    gollm.SetMaxTokens(100),
    gollm.SetTemperature(0.7),
    gollm.SetMemory(4096),
)

// Using OpenRouter (with model fallback)
llm, err := gollm.NewLLM(
    gollm.SetProvider("openrouter"),
    gollm.SetModel("anthropic/claude-3-5-sonnet"),
    gollm.SetAPIKey("your-openrouter-api-key"),
    gollm.SetMaxTokens(500),
)
// Enable fallback models if primary model is unavailable
llm.SetOption("fallback_models", []string{"openai/gpt-4o", "mistral/mistral-large"})
// Or use OpenRouter's auto-routing capability
// llm.SetOption("auto_route", true)

Prompt Creation

prompt := gollm.NewPrompt("Your prompt text here",
    gollm.WithContext("Additional context"),
    gollm.WithDirectives("Be concise", "Use examples"),
    gollm.WithOutput("Expected output format"),
    gollm.WithMaxLength(300),
)

Generate Response

response, err := llm.Generate(ctx, prompt)

Chain of Thought

response, err := tools.ChainOfThought(ctx, llm, "Your question here")

Prompt Optimization

optimizer := optimizer.NewPromptOptimizer(llm, initialPrompt, taskDescription,
    optimizer.WithCustomMetrics(/* custom metrics */),
    optimizer.WithRatingSystem("numerical"),
    optimizer.WithThreshold(0.8),
)
optimizedPrompt, err := optimizer.OptimizePrompt(ctx)

Model Comparison

results, err := tools.CompareModels(ctx, promptText, validateFunc, configs...)

Advanced Usage

The gollm package offers a range of advanced features to enhance your AI applications:

Prompt Engineering

Create sophisticated prompts to guide the AI's responses:

prompt := gollm.NewPrompt(
    "Explain the concept of recursion in programming",
    gollm.WithDirectives(
        "Be concise and clear", 
        "Include code examples in multiple languages",
        "Provide a practical example.",
    ),
    gollm.WithContext("This is for a beginner programmer who is just starting to learn."),
    gollm.WithOutput("Structure your response with sections: Definition, Example, Pitfalls, Best Practices."),
    gollm.WithMaxLength(1000),
)

Provider-Specific Features

OpenRouter Special Features

OpenRouter provides access to multiple LLM providers with additional capabilities:

// Create OpenRouter client
llm, err := gollm.NewLLM(
    gollm.SetProvider("openrouter"),
    gollm.SetModel("anthropic/claude-3-5-sonnet"),
    gollm.SetAPIKey(apiKey),
)

// Enable model fallbacks (tried in order if primary model fails)
llm.SetOption("fallback_models", []string{"openai/gpt-4o", "mistral/mistral-large"})

// Use auto-routing (automatically select best model)
llm.SetOption("auto_route", true)

// Enable prompt caching (improves performance and reduces costs)
llm.SetOption("enable_prompt_caching", true)

// Enable reasoning tokens (step-by-step thinking)
llm.SetOption("enable_reasoning", true)

// Specify provider routing preferences
llm.SetOption("provider_preferences", map[string]interface{}{
    "openai": map[string]interface{}{
        "weight": 1.0,
    },
})

Pre-built Functions (Chain of Thought)

Use the ChainOfThought function for step-by-step reasoning:

question := "What is the result of 15 * 7 + 22?"
response, err := tools.ChainOfThought(ctx, llm, question)
if err != nil {
    log.Fatalf("Failed to perform chain of thought: %v", err)
}
fmt.Printf("Chain of Thought:\n%s\n", response)

Working with Examples

Load examples directly from files:

examples, err := utils.ReadExamplesFromFile("examples.txt")
if err != nil {
    log.Fatalf("Failed to read examples: %v", err)
}

prompt := gollm.NewPrompt("Generate a similar example:",
    gollm.WithExamples(examples...),
)

response, err := llm.Generate(ctx, prompt)
if err != nil {
    log.Fatalf("Failed to generate example: %v", err)
}
fmt.Printf("Generated Example:\n%s\n", response)

Prompt Templates

Create reusable prompt templates for consistent prompt generation:

// Create a new prompt template
template := gollm.NewPromptTemplate(
    "AnalysisTemplate",
    "A template for analyzing topics",
    "Provide a comprehensive analysis of {{.Topic}}. Consider the following aspects:\n" +
    "1. Historical context\n" +
    "2. Current relevance\n" +
    "3. Future implications",
    gollm.WithPromptOptions(
        gollm.WithDirectives(
            "Use clear and concise language",
            "Provide specific examples where appropriate",
        ),
        gollm.WithOutput("Structure your analysis with clear headings for each aspect."),
    ),
)

// Use the template to create a prompt
data := map[string]interface{}{
    "Topic": "artificial intelligence in healthcare",
}
prompt, err := template.Execute(data)
if err != nil {
    log.Fatalf("Failed to execute template: %v", err)
}

// Generate a response using the created prompt
response, err := llm.Generate(ctx, prompt)
if err != nil {
    log.Fatalf("Failed to generate response: %v", err)
}

fmt.Printf("Analysis:\n%s\n", response)

Structured Output (JSON Output Validation)

Ensure your LLM outputs are in a valid JSON format:

prompt := gollm.NewPrompt("Analyze the pros and cons of remote work.",
    gollm.WithOutput("Respond in JSON format with 'topic', 'pros', 'cons', and 'conclusion' fields."),
)

response, err := llm.Generate(ctx, prompt, gollm.WithJSONSchemaValidation())
if err != nil {
    log.Fatalf("Failed to generate valid analysis: %v", err)
}

var result AnalysisResult
if err := json.Unmarshal([]byte(response), &result); err != nil {
    log.Fatalf("Failed to parse response: %v", err)
}

fmt.Printf("Analysis: %+v\n", result)

Prompt Optimizer

Use the PromptOptimizer to automatically refine and improve your prompts:

initialPrompt := gollm.NewPrompt("Write a short story about a robot learning to love.")
taskDescription := "Generate a compelling short story that explores the theme of artificial intelligence developing emotions."

optimizerInstance := optimizer.NewPromptOptimizer(
    llm,
    initialPrompt,
    taskDescription,
    optimizer.WithCustomMetrics(
        optimizer.Metric{Name: "Creativity", Description: "How original and imaginative the story is"},
        optimizer.Metric{Name: "Emotional Impact", Description: "How well the story evokes feelings in the reader"},
    ),
    optimizer.WithRatingSystem("numerical"),
    optimizer.WithThreshold(0.8),
    optimizer.WithVerbose(),
)

optimizedPrompt, err := optimizerInstance.OptimizePrompt(ctx)
if err != nil {
    log.Fatalf("Optimization failed: %v", err)
}

fmt.Printf("Optimized Prompt: %s\n", optimizedPrompt.Input)

Model Comparison

Compare responses from different LLM providers or models:

configs := []*gollm.Config{
    {
        Provider:  "openai",
        Model:     "gpt-4o-mini",
        APIKey:    os.Getenv("OPENAI_API_KEY"),
        MaxTokens: 500,
    },
    {
        Provider:  "anthropic",
        Model:     "claude-3-5-sonnet-20240620",
        APIKey:    os.Getenv("ANTHROPIC_API_KEY"),
        MaxTokens: 500,
    },
    {
        Provider:  "groq",
        Model:     "llama-3.1-70b-versatile",
        APIKey:    os.Getenv("GROQ_API_KEY"),
        MaxTokens: 500,
    },
}

promptText := "Tell me a joke about programming. Respond in JSON format with 'setup' and 'punchline' fields."

validateJoke := func(joke map[string]interface{}) error {
    if joke["setup"] == "" || joke["punchline"] == "" {
        return fmt.Errorf("joke must have both a setup and a punchline")
    }
    return nil
}

results, err := tools.CompareModels(context.Background(), promptText, validateJoke, configs...)
if err != nil {
    log.Fatalf("Error comparing models: %v", err)
}

fmt.Println(tools.AnalyzeComparisonResults(results))

Memory Retention

Enable memory to maintain context across multiple interactions:

llm, err := gollm.NewLLM(
    gollm.SetProvider("openai"),
    gollm.SetModel("gpt-3.5-turbo"),
    gollm.SetAPIKey(os.Getenv("OPENAI_API_KEY")),
    gollm.SetMemory(4096), // Enable memory with a 4096 token limit
)
if err != nil {
    log.Fatalf("Failed to create LLM: %v", err)
}

ctx := context.Background()

// First interaction
prompt1 := gollm.NewPrompt("What's the capital of France?")
response1, err := llm.Generate(ctx, prompt1)
if err != nil {
    log.Fatalf("Failed to generate response: %v", err)
}
fmt.Printf("Response 1: %s\n", response1)

// Second interaction, referencing the first
prompt2 := gollm.NewPrompt("What's the population of that city?")
response2, err := llm.Generate(ctx, prompt2)
if err != nil {
    log.Fatalf("Failed to generate response: %v", err)
}
fmt.Printf("Response 2: %s\n", response2)

Best Practices

  1. Prompt Engineering:

    • Use NewPrompt() with options like WithContext(), WithDirectives(), and WithOutput() to create well-structured prompts.
    • Example:
      prompt := gollm.NewPrompt("Your main prompt here",
          gollm.WithContext("Provide relevant context"),
          gollm.WithDirectives("Be concise", "Use examples"),
          gollm.WithOutput("Specify expected output format"),
      )
  2. Utilize Prompt Templates:

    • For consistent prompt generation, create and use `