Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add registry function and tests for tf.keras.layers.EinsumDense. #431

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions tensorflow_privacy/privacy/fast_gradient_clipping/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -6,12 +6,20 @@ py_library(
name = "gradient_clipping_utils",
srcs = ["gradient_clipping_utils.py"],
srcs_version = "PY3",
deps = [":layer_registry"],
)

py_library(
name = "einsum_utils",
srcs = ["einsum_utils.py"],
srcs_version = "PY3",
)

py_library(
name = "layer_registry",
srcs = ["layer_registry.py"],
srcs_version = "PY3",
deps = [":einsum_utils"],
)

py_library(
Expand Down
30 changes: 24 additions & 6 deletions tensorflow_privacy/privacy/fast_gradient_clipping/clip_grads.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,11 +21,20 @@
`compute_gradient_norms()` function).
"""

from typing import Union, Iterable, Text, TypeAlias

import tensorflow as tf
from tensorflow_privacy.privacy.fast_gradient_clipping import gradient_clipping_utils
from tensorflow_privacy.privacy.fast_gradient_clipping import layer_registry as lr

InputTensor: TypeAlias = Union[
tf.Tensor, Iterable[tf.Tensor], dict[Text, tf.Tensor]
]


def get_registry_generator_fn(tape, layer_registry):
def get_registry_generator_fn(
tape: tf.GradientTape, layer_registry: lr.LayerRegistry
):
"""Creates the generator function for `compute_gradient_norms()`."""
if layer_registry is None:
# Needed for backwards compatibility.
Expand Down Expand Up @@ -53,7 +62,12 @@ def registry_generator_fn(layer_instance, args, kwargs):
return registry_generator_fn


def compute_gradient_norms(input_model, x_batch, y_batch, layer_registry):
def compute_gradient_norms(
input_model: tf.keras.Model,
x_batch: InputTensor,
y_batch: tf.Tensor,
layer_registry: lr.LayerRegistry,
):
"""Computes the per-example loss gradient norms for given data.

Applies a variant of the approach given in
Expand All @@ -62,7 +76,7 @@ def compute_gradient_norms(input_model, x_batch, y_batch, layer_registry):
Args:
input_model: The `tf.keras.Model` from which to obtain the layers from. The
loss of the model *must* be a scalar loss.
x_batch: A `tf.Tensor` representing a batch of inputs to the model. The
x_batch: An `InputTensor` representing a batch of inputs to the model. The
first axis must be the batch dimension.
y_batch: A `tf.Tensor` representing a batch of output labels. The first axis
must be the batch dimension. The number of examples should match the
Expand Down Expand Up @@ -106,7 +120,7 @@ def compute_gradient_norms(input_model, x_batch, y_batch, layer_registry):
return tf.sqrt(tf.reduce_sum(sqr_norm_tsr, axis=1))


def compute_clip_weights(l2_norm_clip, gradient_norms):
def compute_clip_weights(l2_norm_clip: float, gradient_norms: tf.Tensor):
"""Computes the per-example loss/clip weights for clipping.

When the sum of the per-example losses is replaced a weighted sum, where
Expand All @@ -132,7 +146,11 @@ def compute_clip_weights(l2_norm_clip, gradient_norms):


def compute_pred_and_clipped_gradients(
input_model, x_batch, y_batch, l2_norm_clip, layer_registry
input_model: tf.keras.Model,
x_batch: InputTensor,
y_batch: tf.Tensor,
l2_norm_clip: float,
layer_registry: lr.LayerRegistry,
):
"""Computes the per-example predictions and per-example clipped loss gradient.

Expand All @@ -147,7 +165,7 @@ def compute_pred_and_clipped_gradients(

Args:
input_model: The `tf.keras.Model` from which to obtain the layers from.
x_batch: A `tf.Tensor` representing a batch of inputs to the model. The
x_batch: An `InputTensor` representing a batch of inputs to the model. The
first axis must be the batch dimension.
y_batch: A `tf.Tensor` representing a batch of output labels. The first axis
must be the batch dimension. The number of examples should match the
Expand Down
Loading