Skip to content

Commit

Permalink
docs
Browse files Browse the repository at this point in the history
  • Loading branch information
themathqueen committed Nov 20, 2024
1 parent 718dbe7 commit ca19c26
Show file tree
Hide file tree
Showing 3 changed files with 77 additions and 1 deletion.
41 changes: 41 additions & 0 deletions blueprint/src/chapters/qg.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
\chapter{Quantum graphs}

\begin{definition}\label{QuantumGraph}
\uses{QuantumSet, schurMul}
\lean{QuantumGraph}\leanok
A \textit{quantum graph} is a pair $(B,A)$, where $B$ is a quantum set and $A$ is a linear map $B\to B$ such that $A\bullet A=A$.
\end{definition}

\begin{definition}\label{QuantumGraph.Real}
\uses{QuantumGraph, LinearMap.IsReal}
\lean{QuantumGraph.Real}\leanok
A quantum graph $(B,A)$ is \textit{real} if $A$ is a real linear map.
\end{definition}

\begin{lemma}\label{Coalgebra.comul_mul}
\uses{QuantumSet}
\lean{Coalgebra.comul_mul_of_gns}\leanok
Given a quantum set $B$, we have
\[m^*m=\sum_i\rmul(u_i)\otimes\lmul(u_i^*),\]
where $(u_i)_i$ is an orthonormal basis of $B$.
\end{lemma}
\begin{proof}\uses{rmulMapLmul_apply_Upsilon_eq}\leanok
Using Lemma \ref{rmulMapLmul_apply_Upsilon_eq}, we get
\[m^*m=\Phi(\operatorname{id})=\rmul(u_i)^*\otimes\lmul(u_i).\]
Taking adjoints of the above then gives us our desired result.
\end{proof}

\begin{lemma}\label{QuantumGraph.Real.isPosMap}
\uses{QuantumGraph.Real, LinearMap.IsPosMap}
\lean{schurIdempotent.isSchurProjection_iff_isPosMap}\leanok
Given a quantum graph $(B,A)$, we have $(B,A)$ is real if and only if $A$ is a positive map.
\end{lemma}
\begin{proof}\uses{isReal_of_isPosMap, Coalgebra.comul_mul}\leanok
If $A$ is a positive map, then it is real by Theorem \ref{isReal_of_isPosMap}.
So suppose $A$ is real. Now let $x\in{B}$. Then using Lemma \ref{Coalgebra.comul_mul}, we compute,
\begin{align*}
A(x^*x) &= (A \bullet A)m(x^*\otimes x)\\
&= \sum_im(A\otimes A)(x^*u_i\otimes u_i^*x)\\
&= \sum_iA(x^*u_i)A(u_i^*x)=\sum_i{A(u_i^*x)}^*A(u_i^*x) \geq0.
\end{align*}
\end{proof}
36 changes: 35 additions & 1 deletion blueprint/src/chapters/quantumset.tex
Original file line number Diff line number Diff line change
Expand Up @@ -157,4 +157,38 @@ \chapter{Quantum sets}
\[\Psi_{t,r}(\ketbra{a}{b})=\vartheta_t(a)\otimes{\sigma_r(b)}^{*\operatorname{op}},\]
with inverse given by
\[\Psi_{t,r}^{-1}(a\otimes b^{\operatorname{op}})=\ketbra{\sigma_{-t}(a)}{\vartheta_{-r}(b^*)}.\]
\end{definition}
\end{definition}

\begin{definition}\label{tenSwap}
\lean{tenSwap}\leanok
We define the tensor swap map to be $\varrho\colon A\otimes B^{\operatorname{op}}\cong B\otimes A^{\operatorname{op}}$, given by $x\otimes y^{\operatorname{op}}\mapsto y\otimes x^{\operatorname{op}}$.
\end{definition}

\begin{definition}\label{Upsilon}
\uses{QuantumSet.Psi, tenSwap}
\lean{Upsilon}\leanok
We define $\Upsilon$ to be the linear isomorphism from $\Bcal(\mathcal{A}_1,\mathcal{A}_2)$ to $\mathcal{A}_1\otimes\mathcal{A}_2$ given by $(\operatorname{id}\otimes\operatorname{unop})\varrho\Psi_{0,1}$.
\end{definition}

% \begin{lemma}\lean{}
% $\Upsilon(\ketbra{a}{b})=\sigma_{-1}(b^*)\otimes a$.
% \end{lemma}
% \begin{lemma}
% $\Upsilon^{-1}(a\otimes b)=\ketbra{b}{\sigma_{-1}(a^*)}$.
% \end{lemma}

\begin{definition}\label{PhiMap}
\uses{Upsilon}
\lean{PhiMap}\leanok
We define $\Phi$ to be the linear isomorphism from $\Bcal(\mathcal{A}_1,\mathcal{A}_2)$ to the bimodule maps in $\Bcal(\mathcal{A}_1\otimes\mathcal{A}_2)$ given by $(\rmul\otimes\lmul)\Upsilon$.
\end{definition}

\begin{lemma}\label{rmulMapLmul_apply_Upsilon_eq}
\uses{PhiMap}
\lean{rmulMapLmul_apply_Upsilon_eq}\leanok
\[\Phi(A)=(\operatorname{id}\otimes m)(\operatorname{id}\otimes A\otimes\operatorname{id})(m^*\otimes\operatorname{id}).\]
\end{lemma}
\begin{proof}

\end{proof}

1 change: 1 addition & 0 deletions blueprint/src/chapters/scene.tex
Original file line number Diff line number Diff line change
Expand Up @@ -5,3 +5,4 @@
\input{chapters/quantumset.tex}
\input{chapters/schur.tex}
\input{chapters/posmap.tex}
\input{chapters/qg.tex}

0 comments on commit ca19c26

Please sign in to comment.