Skip to content

Fix and unify docs about maximal lattices #4407

Fix and unify docs about maximal lattices

Fix and unify docs about maximal lattices #4407

Triggered via pull request December 4, 2023 09:02
Status Failure
Total duration 1h 14m 46s
Artifacts
This run and associated checks have been archived and are scheduled for deletion. Learn more about checks retention

CI.yml

on: pull_request
Matrix: test
Fit to window
Zoom out
Zoom in

Annotations

1 error and 1 warning
test (nightly, ubuntu-latest)
Process completed with exit code 1.
Documentation: ../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2356 docstrings not included in the manual: modulus :: Union{Tuple{fqPolyRepField}, Tuple{fqPolyRepField, Union{Char, AbstractString, Symbol}}} modulus :: Tuple{FlintPuiseuxSeriesElem} modulus :: Union{Tuple{FqPolyRepField}, Tuple{FqPolyRepField, Union{Char, AbstractString, Symbol}}} different_divisor :: Tuple{AbstractAlgebra.Generic.FunctionField} is_twist :: Tuple{EllCrv, EllCrv} signature_tuples :: Tuple{Hecke.QuadSpace} NmodAbsSeriesRing fqPolyRepPolyRing basis_matrix :: Tuple{Hecke.AbsAlgAssIdl} basis_matrix :: Tuple{Hecke.NfAbsOrdFracIdl} basis_matrix :: Tuple{Vector{<:NumFieldElem}} basis_matrix :: Tuple{Hecke.AlgAssRelOrdIdl} basis_matrix :: Tuple{Hecke.AlgAssAbsOrd} basis_matrix :: Tuple{Union{Hecke.NfRelOrdFracIdl, Hecke.NfRelOrdIdl}} basis_matrix :: Tuple{Hecke.AlgAssAbsOrdIdl} basis_matrix :: Tuple{Hecke.GenOrdIdl} basis_matrix :: Tuple{Hecke.AlgAssRelOrd} composition_factors_with_multiplicity :: Union{Tuple{Hecke.ModAlgAss{S, T, V}}, Tuple{V}, Tuple{T}, Tuple{S}} where {S, T, V} is_maximal :: Tuple{Hecke.AlgAssAbsOrd} is_maximal :: Tuple{Hecke.AlgAssRelOrd} is_maximal :: Tuple{NumFieldOrd} nrootscubic :: NTuple{4, Any} cycle :: Tuple{QuadBin{ZZRingElem}} HessQRModule FiniteField is_embedded :: Union{Tuple{T}, Tuple{T, T}} where T<:FinField is_real :: Tuple{InfPlc} get_b_integral :: Tuple{Any} multiplication_by_m_map :: Union{Tuple{S}, Tuple{EllCrv, S}} where S<:Union{Integer, ZZRingElem} isimaginary is_prime_power :: Tuple{Union{Integer, ZZRingElem}} nmod_poly FpMPolyRingElem iscm_field_easy getindex :: Union{Tuple{T}, Tuple{SRow{T}, Int64}} where T<:RingElem getindex :: Tuple{Ring, GroupsCore.Group} getindex :: Tuple{GrpGen, Int64} getindex :: Tuple{TorQuadModule, Int64} gfp_elem nullspace :: Union{Tuple{SMat{T}}, Tuple{T}} where T<:FieldElement maximal_submodules :: Union{Tuple{Hecke.ModAlgAss{S, T, V}}, Tuple{V}, Tuple{T}, Tuple{S}, Tuple{Hecke.ModAlgAss{S, T, V}, Int64}, Tuple{Hecke.ModAlgAss{S, T, V}, Int64, Any}} where {S, T, V} extend_to_cyclotomic :: Tuple{CyclotomicExt, NfToNfMor} pol_length :: Tuple{ZZLaurentSeriesRingElem} fmpz_rel_series qadic ideal_class_monoid :: Tuple{T} where T<:Union{Hecke.AlgAssAbsOrd, NfAbsOrd} picard_group :: Union{Tuple{Hecke.AlgAssAbsOrd}, Tuple{Hecke.AlgAssAbsOrd, Bool}} hensel_qf :: Union{Tuple{T}, Tuple{T, T, Any, Any, Any}} where T<:Union{ZZModMatrix, zzModMatrix} multgrp_of_cyclic_grp :: Tuple{ZZRingElem} isquadratic_type GenusQuad weierstrass_p :: Union{Tuple{ComplexFieldElem, ComplexFieldElem}, Tuple{ComplexFieldElem, ComplexFieldElem, Int64}} weierstrass_p :: Tuple{acb, acb} det_given_divisor :: Union{Tuple{ZZMatrix, ZZRingElem}, Tuple{ZZMatrix, ZZRingElem, Any}} det_given_divisor :: Union{Tuple{ZZMatrix, Integer}, Tuple{ZZMatrix, Integer, Any}} rresx :: Tuple{ZZPolyRingElem, ZZPolyRingElem} rresx :: Union{Tuple{T}, Tuple{S}, Tuple{PolyRingElem{T}, PolyRingElem{T}}} where {S<:Union{Integer, ZZRingElem}, T<:ResElem{S}} QQFieldElem :: Tuple{qqbar} QQFieldElem isfrom_db matrix_algebra :: Tuple{Ring, NCRing, Int64} matrix_algebra :: Tuple{Ring, Vector{<:MatElem}} matrix_algebra :: Tuple{Ring, Int64} matrix_algebra :: Tuple{Ring, NCRing, Vector{<:MatElem}} fq_default_mpoly issurjective is_isometric_with_isometry :: Union{Tuple{M}, Tuple{F}, Tuple{Hecke.QuadSpace{F, M}, Hecke.QuadSpace{F, M}}} where {F, M} sinhcosh :: Tuple{acb} sinhcosh :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}} isdivisible_mod_ideal rsqrt :: Union{Tuple{RealFieldElem}, Tuple{RealFieldElem, Int64}} rsqrt :: Tuple{arb} rsqrt :: Tuple{acb} rsqrt :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}} companion_matrix :: Tuple{PolyRingElem} quadratic_defect :: Tuple{NumFieldOrdElem, Union{NfAbsOrdIdl, Hecke.NfRelOrdIdl}} quadratic_defect :: Tuple{Any, Any} isnorm_