Remove instance dispatches for {elem,parent}_type
#4413
Triggered via pull request
December 5, 2023 17:04
Status
Success
Total duration
1h 33m 1s
Artifacts
–
CI.yml
on: pull_request
Documentation
8m 57s
Matrix: test
Annotations
1 warning
Documentation:
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2320 docstrings not included in the manual:
>> :: Tuple{QQFieldElem, Int64}
>> :: Tuple{ZZRingElem, Int64}
>> :: Tuple{ZZMatrix, Int64}
bell :: Tuple{ZZRingElem}
bell :: Tuple{ZZRingElem, ArbField}
bell :: Union{Tuple{ZZRingElem, RealField}, Tuple{ZZRingElem, RealField, Int64}}
bell :: Union{Tuple{Int64, RealField}, Tuple{Int64, RealField, Int64}}
bell :: Tuple{Int64}
bell :: Tuple{Int64, ArbField}
iscochain_complex
isleaf
minimal_discriminant :: Tuple{EllCrv{QQFieldElem}}
minimal_discriminant :: Tuple{EllCrv{nf_elem}}
nullspace :: Union{Tuple{SMat{T}}, Tuple{T}} where T<:FieldElement
isequal_abs
eigenspace :: Union{Tuple{T}, Tuple{MatElem{T}, T}} where T<:FieldElem
equation_order :: Tuple{NfAbsOrd}
read :: Tuple{IO, AnticNumberField, Type{nf_elem}}
read :: Tuple{String, AnticNumberField, Type{nf_elem}}
rational_canonical_form :: Union{Tuple{MatElem{T}}, Tuple{T}} where T<:FieldElem
absolute_representation_matrix :: Tuple{Hecke.NfRelElem}
zassenhaus :: Tuple{PolyRingElem{nf_elem}, NfOrdIdl}
hadamard :: Tuple{ZZMatrixSpace}
kronecker_symbol :: Tuple{Int64, Int64}
isless_root_order
number_of_partitions :: Tuple{Int64}
torsion_points_lutz_nagell :: Tuple{EllCrv{QQFieldElem}}
issubfield
classical_modular_polynomial
_direct_product :: Tuple{Symbol, Vararg{GrpAbFinGen}}
Hensel_factorization :: Union{Tuple{AbstractAlgebra.Generic.Poly{T}}, Tuple{T}} where T<:Union{padic, qadic, Hecke.LocalFieldElem}
is_isomorphic_with_map :: Tuple{AnticNumberField, AnticNumberField}
is_isomorphic_with_map :: Union{Tuple{T}, Tuple{T, T}} where T<:Union{Hecke.NfAbsOrdFracIdl{AnticNumberField, nf_elem}, Hecke.AlgAssAbsOrdIdl, NfAbsOrdIdl}
iscm_field_known
zero :: Tuple{TorQuadModuleMor}
neighbours_with_ppower :: Tuple{Any, Any, Any}
AbsSpaceMor
composition_series :: Union{Tuple{Hecke.ModAlgAss{S, T, V}}, Tuple{V}, Tuple{T}, Tuple{S}} where {S, T, V}
maximal_eichler_quotient_with_projection :: Tuple{Hecke.AbsAlgAss}
islocally_isomorphic_with_isomophism
torsion_points_division_poly :: Tuple{EllCrv{QQFieldElem}}
ispower_trager
genus_field :: Tuple{ClassField}
factor_new :: Tuple{PolyRingElem{nf_elem}}
lower_discriminant_bound :: Tuple{Int64, Int64}
NumFieldOrd
extend_easy :: Tuple{Hecke.NfOrdToFqNmodMor, AnticNumberField}
get_assert_level
iscanonical
iseisenstein_polynomial
naive_height :: Union{Tuple{EllCrvPt{nf_elem}}, Tuple{EllCrvPt{nf_elem}, Int64}}
naive_height :: Union{Tuple{EllCrvPt{QQFieldElem}}, Tuple{EllCrvPt{QQFieldElem}, Int64}}
QQMatrixSpace
dec :: Tuple{ZZRingElem}
isreal :: Tuple{qqbar}
isreal :: Tuple{ca}
const_euler :: Tuple{ArbField}
const_euler :: Tuple{CalciumField}
const_euler :: Union{Tuple{RealField}, Tuple{RealField, Int64}}
fmpq
representation_matrix_mod :: Tuple{NfAbsOrdElem, ZZRingElem}
divisor_sigma :: Tuple{ZZRingElem, Int64}
is_locally_isomorphic :: Union{Tuple{T}, Tuple{T, T}} where T<:Union{Hecke.NfAbsOrdFracIdl{AnticNumberField, nf_elem}, Hecke.AlgAssAbsOrdIdl, NfAbsOrdIdl}
primsplit! :: Union{Tuple{PolyRingElem{T}}, Tuple{T}, Tuple{S}} where {S<:Union{Integer, ZZRingElem}, T<:ResElem{S}}
zzModRing
dot :: Union{Tuple{T}, Tuple{SRow{T}, SRow{T}}} where T
EquationOrder :: Tuple{QQPolyRingElem}
EquationOrder :: Union{Tuple{NumField{QQFieldElem}}, Tuple{NumField{QQFieldElem}, Bool}}
EquationOrder :: Tuple{ZZPolyRingElem}
fmpz_abs_series
pow :: Tuple{ca, Int64}
mod! :: Tuple{AbstractAlgebra.Generic.Mat{nf_elem}, ZZRingElem}
nmod_rel_series
isunknown
gamma :: Tuple{arb, arb}
gamma :: Tuple{acb}
gamma :: Tuple{ZZRingElem, ArbField}
gamma :: Union{Tuple{QQFieldElem, RealField}, Tuple{QQFieldElem, RealField, Int64}}
gamma :: Union{Tuple{ZZRingElem, RealField}, Tuple{ZZRingElem, RealField, Int64}}
gamma :: Union{Tuple{RealFieldElem, RealFieldElem}, Tuple{RealFieldElem, RealFieldElem, Int64}}
gamma :: Tuple{ca
|