Skip to content

Commit

Permalink
Improve saturate
Browse files Browse the repository at this point in the history
  • Loading branch information
mgkurtz committed Jun 8, 2023
1 parent 6f8baca commit 8b9ca36
Showing 1 changed file with 24 additions and 37 deletions.
61 changes: 24 additions & 37 deletions src/Misc/Matrix.jl
Original file line number Diff line number Diff line change
Expand Up @@ -144,36 +144,26 @@ julia> saturate(ZZ[1 2;3 4;5 6])
```
"""
function saturate(A::ZZMatrix) :: ZZMatrix
# Let AU = [H 0matrix] in HNF and HS = A = [H 0matrix]U⁻¹
# We have S == U⁻¹[1:rank(H), :] in ZZ with trivial elementary divisors.
# For any invertible H' with H'H = 1, also S = H'HS = H'A.
H = hnf!(transpose(A))
H = transpose!(view(H, 1:rank_of_ref(H), :))
return solve(H, A)
end

function column_saturate(A::ZZMatrix) :: ZZMatrix
saturate(A::ZZMatrix) = transpose(column_saturate(transpose(A)))
column_saturate(A::ZZMatrix) = hnf_with_column_saturate_and_rank(A)[2]
function hnf_with_column_saturate_and_rank(A::ZZMatrix) :: Tuple{ZZMatrix, ZZMatrix, Int}
# Let UA = [H; 0matrix] in HNF and SH = A = U⁻¹[H; 0matrix].
# We have S == U⁻¹[:, 1:rank(H)] in ZZ with trivial elementary divisors.
# For any invertible H' with HH' = 1, also S = SHH' = AH'.
H = hnf(A)
return solve_left(view(H, 1:rank_of_ref(H), :), A)
end

function column_hnf_with_transform_via_saturate(A::ZZMatrix) :: Tuple{ZZMatrix, ZZMatrix}
# Typically the entries of U = S⁻¹ will explode compared to A, S, and U.
# Thus, `inv(S)` needs the larger part of the runtime here.
H, S = column_hnf_with_backtransform_via_saturate(A)
return H, inv(S)
k, p = pivots_of_ref(H)
ps = 1:findlast(p) # `findall(p)` impossible in `view`
return H, solve_left(view(H, 1:k, ps), view(A, :, ps)), k
end

function hnf_with_transform_via_saturate(A::ZZMatrix) :: Tuple{ZZMatrix, ZZMatrix}
# Typically the entries of T = S⁻¹ will explode compared to A, S, and U.
# Thus, `inv(S)` needs the larger part of the runtime here.
# We may improve this in the case, extra columns were added.
H, S = hnf_with_backtransform_via_saturate(A)
return H, inv(S)
end

function column_hnf_with_backtransform_via_saturate(A::ZZMatrix) :: Tuple{ZZMatrix, ZZMatrix}
return transpose.(hnf_with_backtransform_via_saturate(transpose(A)))
end

function hnf_with_backtransform_via_saturate(A::ZZMatrix) :: Tuple{ZZMatrix, ZZMatrix}
# Want (H, U) from UA = H. As computing U along the way gets slow,
# instead compute U⁻¹ satisfying A = U⁻¹H after the fact from H.
Expand All @@ -183,18 +173,15 @@ function hnf_with_backtransform_via_saturate(A::ZZMatrix) :: Tuple{ZZMatrix, ZZM
# TODO Find out, how to choose them efficiently.
# Most of the computation time goes into the HNF.
m = nrows(A); k = 0
H = hnf(A)
k = rank_of_ref(H)
S = solve_left(H, A)
H, S, k = hnf_with_column_saturate_and_rank(A)
while k != m
# Probably not efficient, but working.
# We could also add the columns to A for the same effect.
A = add_random_cols(S, m-k)
h = hnf(A) # This needs some time again :(
# This needs some time again:
h, S, k = hnf_with_column_saturate_and_rank(A)
# The following holds, due to S being unimodular:
@assert h[1:k, 1:k] == identity_matrix(base_ring(h), k)
k = rank_of_ref(h)
S = solve_left(h, A)
end
return H, S
end
Expand All @@ -218,26 +205,26 @@ function add_independent_rows(A::MatrixElem)
end
add_independent_cols(A::MatrixElem) = transpose!(add_independent_rows(transpose(A)))

function non_pivot_cols_of_ref(H::MatrixElem)
# H must be in row echolon form
p = Int[]
# H must be in row echolon form
function pivots_of_ref(H::MatrixElem) :: Tuple{Int, BitVector}
p = falses(ncols(H))
i = 1
for j in axes(H, 2)
i == nrows(H)+1 && (append!(p, j:ncols(H)); break)
is_zero_entry(H, i, j) ? push!(p, j) : (i+=1)
i == nrows(H)+1 && break
is_zero_entry(H, i, j) || (p[i] = true; i+=1)
end
@assert length(p) == ncols(H) - rank_of_ref(H)
return p
return i-1, p
end

function rank_of_ref(H::MatrixElem)
i = 1
for j in axes(H, 2)
is_zero_entry(H, i, j) || (i+=1)
i == nrows(H)+1 && break
is_zero_entry(H, i, j) || (i+=1)
end
return i-1
end
pivot_cols_of_ref(H::MatrixElem) = findall(pivots_of_ref(H)[2])
non_pivot_cols_of_ref(H::MatrixElem) = findall(!, pivots_of_ref(H)[2])

transpose!(A::Union{ZZMatrix, QQMatrix}) = is_square(A) ? transpose!(A, A) : transpose(A)

Expand Down

0 comments on commit 8b9ca36

Please sign in to comment.