Skip to content

Commit

Permalink
Squashed commit of the following:
Browse files Browse the repository at this point in the history
commit 401a711
Author: Johannes Schmitt <schmitt@mathematik.uni-kl.de>
Date:   Fri Oct 6 15:47:13 2023 +0200

    Fix `_order(::NumField, ::Vector{NumFieldElem})`

commit 48c9923
Author: Tommy Hofmann <thofma@gmail.com>
Date:   Mon Sep 25 09:19:26 2023 +0200

    Fixing Order([...])
  • Loading branch information
joschmitt committed Oct 10, 2023
1 parent 41b61f3 commit 8d29375
Show file tree
Hide file tree
Showing 3 changed files with 83 additions and 84 deletions.
150 changes: 67 additions & 83 deletions src/NumFieldOrd/NfOrd/NfOrd.jl
Original file line number Diff line number Diff line change
Expand Up @@ -747,9 +747,8 @@ checked by computing minimal polynomials. If `isbasis` is set, then elements are
assumed to form a $\mathbf{Z}$-basis. If `cached` is set, then the constructed
order is cached for future use.
"""
function Order(::S, a::Vector{T}; check::Bool = true, isbasis::Bool = false,
function Order(K::S, a::Vector{T}; check::Bool = true, isbasis::Bool = false,
cached::Bool = false) where {S <: NumField{QQFieldElem}, T <: NumFieldElem{QQFieldElem}}
K = parent(a[1])
@assert all(x->K == parent(x), a)
if isbasis
if check
Expand All @@ -769,9 +768,10 @@ end

function Order(K, a::Vector; check::Bool = true, isbasis::Bool = false,
cached::Bool = true)
local b
local b::Vector{elem_type(K)}
try
b = map(K, a)
b = convert(Vector{elem_type(K)}, b)
catch
error("Cannot coerce elements from array into the number field")
end
Expand Down Expand Up @@ -886,20 +886,13 @@ function any_order(K::NfAbsNS)
g = gens(K)
for i in 1:ngens(K)
f = denominator(K.pol[i]) * K.pol[i]
@show f
@show isone(coeff(f, 1))
@show coeff(f, 1)
@show typeof(f)
@show g[i]
if isone(coeff(f, 1))
normalized_gens[i] = g[i]
else
normalized_gens[i] = coeff(f, 1) * g[i]
end
end

@show normalized_gens

b = Vector{NfAbsNSElem}(undef, degree(K))
ind = 1
it = cartesian_product_iterator([1:degrees(K)[i] for i in 1:ngens(K)], inplace = true)
Expand Down Expand Up @@ -999,114 +992,105 @@ The equation order of the number field.
"""
equation_order(M::NfAbsOrd) = equation_order(nf(M))

# Construct the smallest order of K containing the elements in elt.
# If check == true, it is checked whether the given elements in elt are integral
# and whether the constructed order is actually an order.
# Via extends one may supply an order which will then be extended by the elements
# in elt.
function _order(K::S, elt::Vector{T}; cached::Bool = true, check::Bool = true, extends = nothing) where {S <: NumField{QQFieldElem}, T}
#=
check == true: the elements are known to be integral
extends !== nothing: then extends is an order, which we are extending
=#
elt = unique(elt)
n = degree(K)

extending = false

local B::FakeFmpqMat = FakeFmpqMat()

if extends !== nothing
extended_order::order_type(K) = extends
@assert K === nf(extended_order)
extend = true

if is_maximal_known_and_maximal(extended_order) || length(elt) == 0
return extended_order
end
#in this case we can start with phase 2 directly as we have mult. closed
#module to start with, so set everything up for it...
B = basis_matrix(extended_order)
bas = basis(extended_order, K)
phase = 2
full_rank = true
m = det(numerator(B, copy = false))
else
if isempty(elt)
elt = elem_type(K)[one(K)]
end
bas = elem_type(K)[one(K)]
phase = 1
B = basis_matrix(bas, FakeFmpqMat) # trivially in lower-left HNF
full_rank = false
end

function in_span_of_B(x::T)
if mod(denominator(B, copy = false), denominator(x)) == 0
C = basis_matrix(elem_type(K)[x], FakeFmpqMat)
return is_zero_mod_hnf!(div(denominator(B, copy = false), denominator(x))*numerator(C, copy = false), numerator(B, copy = false))
end
return false
end

for e in elt
# @show findall(isequal(e), elt)
if phase == 2
if denominator(B) % denominator(e) == 0
C = basis_matrix([e], FakeFmpqMat)
fl, _ = can_solve_with_solution(B.num, div(B.den, denominator(e))*C.num, side = :left)
# fl && println("elt known:", :e)
fl && continue
end
end
# Check if e is already in the multiplicatively closed module generated by
# the previous elements of elt
in_span_of_B(e) && continue

# Multiply powers of e to the existing basis elements
if check
f = minpoly(e)
isone(denominator(f)) || error("data does not define an order, $e is non-integral")
df = degree(f)-1
isone(denominator(f)) || error("The elements do not define an order: $e is non-integral")
df = degree(f) - 1
else
df = n-1
df = n - 1
end
f = one(K)
for i=1:df
mul!(f, f, e)
if phase == 2 # don't understand this part
if denominator(B) % denominator(f) == 0
C = basis_matrix(elem_type(K)[f], FakeFmpqMat)
fl = is_zero_mod_hnf!(div(B.den, denominator(f))*C.num, B.num)
# fl && println("inner abort: ", :e, " ^ ", i)
fl && break
end
end
if phase == 1
# [1] -> [1, e] -> [1, e, e, e^2] -> ... otherwise
push!(bas, deepcopy(f))
else
b = elem_type(K)[e*x for x in bas]
append!(bas, b)

start = 1
# We only multiply the elements of index start:length(bas) by e .
# Example: bas = [a_1, ..., a_k] with a_1 = 1. Then
# new_bas := [e, e*a_2, ..., e*a_k] and we append this to bas and set
# start := k + 1. In the next iteration, we then have
# new_bas := [e^2, e^2*a_2, ..., e^2*a_k] (assuming that there was no
# reduction of the basis in between).
for i in 1:df
new_bas = elem_type(K)[]
for j in start:length(bas)
t = e*bas[j]
in_span_of_B(t) && continue
push!(new_bas, t)
end
isempty(new_bas) && break
start = length(bas) + 1
append!(bas, new_bas)

if length(bas) >= n
# HNF reduce the basis we have so far, if B is already of full rank,
# we can do this with the modular algorithm
B = basis_matrix(bas, FakeFmpqMat)
if extending
# We are extending extended_order, which has basis matrix M/d
# Thus we know that B.den/d * M \subseteq <B.num>
# So we can take B.den/d * largest_elementary_divisor(M) as the modulus
B = hnf_modular_eldiv(B, B.den, shape = :lowerleft)
if full_rank
# We have M/d \subseteq B, where M/d is a former incarnation of B.
# So we can use B.den*det(M) as a modulus.
hnf_modular_eldiv!(B, denominator(B, copy = false)*m, shape = :lowerleft)
B = sub(B, nrows(B) - n + 1:nrows(B), 1:n)
else
hnf!(B)
k = findfirst(k -> !is_zero_row(B, k), nrows(B) - n + 1:nrows(B))
B = sub(B, nrows(B) - n + k:nrows(B), 1:n)
if nrows(B) == n
full_rank = true
m = det(numerator(B, copy = false))
end
end
rk = nrows(B) - n + 1
while is_zero_row(B, rk)
rk += 1
end
B = sub(B, rk:nrows(B), 1:n)
phase = 2
bas = elem_type(K)[ elem_from_mat_row(K, B.num, i, B.den) for i = 1:nrows(B) ]
bas = elem_type(K)[ elem_from_mat_row(K, numerator(B, copy = false), i, denominator(B, copy = false)) for i = 1:nrows(B) ]
start = 1
if check
@assert isone(bas[1])
end
end
end
end

if length(bas) > n # == n can only happen here after an hnf was computed
# above. Don't quite see how > n can happen here either
B = basis_matrix(bas, FakeFmpqMat)
hnf!(B)
rk = nrows(B) - n + 1
if is_zero_row(B.num, rk)
error("data does not define an order: dimension to small")
end
B = sub(B, rk:nrows(B), 1:n)
bas = elem_type(K)[ elem_from_mat_row(K, B.num, i, B.den) for i = 1:nrows(B) ]
if length(bas) < n
error("The elements do not define an order: rank too small")
end

if !isdefined(B, :num)
error("data does not define an order: dimension to small")
end

# Make an explicit check
@hassert :NfOrd 1 defines_order(K, B)[1]
return Order(K, B, cached = cached, check = check)
return Order(K, B, cached = cached, check = check)::order_type(K)
end

################################################################################
Expand Down
2 changes: 1 addition & 1 deletion test/NfOrd/NfOrd.jl
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@
#@test O7 == O77
#@test !(O7 === O77)

O8 = Order(K6, [a1])
O8 = Order(K1, [a1])
@test O8 == EquationOrder(K1)

@test_throws ErrorException Order(K1, [a1, a1, a1], isbasis = true)
Expand Down
15 changes: 15 additions & 0 deletions test/NumFieldOrd/NumFieldOrd.jl
Original file line number Diff line number Diff line change
Expand Up @@ -124,5 +124,20 @@ end
@test extend(R, []) == R
@test extend(R, [1//2 + a//2]) == maximal_order(K)
@test extend(maximal_order(R), [a]) == maximal_order(R)

K, a = number_field(x, "a")
@test Order(K, [1]) == equation_order(K)
@test Order(K, []) == equation_order(K)

K, a = NumberField(x^4 - 10*x^2 + 1, "a")
x = 1//2*a^3 - 9//2*a # sqrt(2)
y = 1//2*a^3 - 11//2*a # sqrt(3)
O = Order(K, [x, y, x*y])
@test O == Order(K, [x, y])
@test O == Order(K, [x, y], check = false)
z = 1//4*a^3 + 1//4*a^2 + 3//4*a + 3//4
OO = Hecke._order(K, [z], extends = O)
@test is_maximal(OO)
@test_throws ErrorException Order(K, [x])
end

0 comments on commit 8d29375

Please sign in to comment.