Skip to content

Commit

Permalink
Adjust to renamings in AA
Browse files Browse the repository at this point in the history
  • Loading branch information
fingolfin committed Oct 8, 2023
1 parent e61502d commit ca9da35
Show file tree
Hide file tree
Showing 16 changed files with 36 additions and 36 deletions.
4 changes: 2 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -28,9 +28,9 @@ GAPExt = "GAP"
PolymakeExt = "Polymake"

[compat]
AbstractAlgebra = "^0.32.1"
AbstractAlgebra = "^0.33.0"
GAP = "0.9.6"
Nemo = "^0.36.1"
Nemo = "^0.37.0"
Polymake = "0.10, 0.11"
RandomExtensions = "0.4.3"
julia = "1.6"
Expand Down
4 changes: 2 additions & 2 deletions docs/src/function_fields/degree_localization.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ localization(K::Generic.RationalFunctionField{T}, ::typeof(degree)) where T <: F

```@repl
using Hecke # hide
K, x = RationalFunctionField(FlintQQ, "x");
K, x = rational_function_field(FlintQQ, "x");
R = localization(K, degree)
```

Expand All @@ -51,7 +51,7 @@ the degree localization

```@repl
using Hecke # hide
K, x = RationalFunctionField(FlintQQ, "x");
K, x = rational_function_field(FlintQQ, "x");
R = localization(K, degree)
a = R()
Expand Down
10 changes: 5 additions & 5 deletions examples/Round2.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1057,7 +1057,7 @@ function Nemo.residue_field(a::HessQR, b::HessQRElem)
@assert parent(b) == a
@assert is_prime(b.c)
F = GF(b.c)
Ft, t = RationalFunctionField(F, String(var(a.R)), cached = false)
Ft, t = rational_function_field(F, String(var(a.R)), cached = false)
R = parent(numerator(t))
return Ft, MapFromFunc(a, Ft,
x->F(x.c)*Ft(map_coefficients(F, x.f, parent = R))//Ft(map_coefficients(F, x.g, parent = R)),
Expand Down Expand Up @@ -1330,9 +1330,9 @@ Hecke.example("Round2.jl")
?GenericRound2
Qt, t = RationalFunctionField(QQ, "t")
Qt, t = rational_function_field(QQ, "t")
Qtx, x = polynomial_ring(Qt, "x")
F, a = FunctionField(x^6+27*t^2+108*t+108, "a")
F, a = function_field(x^6+27*t^2+108*t+108, "a")
integral_closure(parent(denominator(t)), F)
integral_closure(localization(Qt, degree), F)
integral_closure(Hecke.Globals.Zx, F)
Expand All @@ -1345,7 +1345,7 @@ integral_closure(localization(ZZ, 2), k)
more interesting and MUCH harder:
G, b = FunctionField(x^6 + (140*t - 70)*x^3 + 8788*t^2 - 8788*t + 2197, "b")
G, b = function_field(x^6 + (140*t - 70)*x^3 + 8788*t^2 - 8788*t + 2197, "b")
=#

Expand Down Expand Up @@ -1442,7 +1442,7 @@ function Hecke.splitting_field(f::Generic.Poly{<:Generic.RationalFunctionFieldEl
end

while true
G, b = FunctionField(lf[1], "b", cached = false)
G, b = function_field(lf[1], "b", cached = false)
if length(lf) == 1 && degree(G) < 3
return G
end
Expand Down
4 changes: 2 additions & 2 deletions src/FunField/Factor.jl
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ function Hecke.factor_absolute(f::Generic.Poly{<:Generic.RationalFunctionFieldEl
g = gh[1]
h = gh[2]
k = base_ring(g)
kt, t = RationalFunctionField(k, base_ring(Pf).S, cached = false)
kt, t = rational_function_field(k, base_ring(Pf).S, cached = false)
ktx, x = polynomial_ring(kt, symbols(Pf)[1], cached = false)
push!(la, [from_mpoly(g, ktx), from_mpoly(h, ktx)]=>v)
end
Expand Down Expand Up @@ -121,7 +121,7 @@ function Hecke.splitting_field(f::Generic.Poly{<:Generic.RationalFunctionFieldEl
end

while true
G, b = FunctionField(lf[1], "b", cached = false)
G, b = function_field(lf[1], "b", cached = false)
if length(lf) == 1 && degree(G) < 3
return G
end
Expand Down
2 changes: 1 addition & 1 deletion src/FunField/HessQR.jl
Original file line number Diff line number Diff line change
Expand Up @@ -335,7 +335,7 @@ function Nemo.residue_field(a::HessQR, b::HessQRElem)
@assert parent(b) == a
@assert is_prime(b.c)
F = GF(b.c)
Ft, t = RationalFunctionField(F, String(var(a.R)), cached = false)
Ft, t = rational_function_field(F, String(var(a.R)), cached = false)
R = parent(numerator(t))
return Ft, MapFromFunc(a, Ft,
x->F(x.c)*Ft(map_coefficients(F, x.f, parent = R))//Ft(map_coefficients(F, x.g, parent = R)),
Expand Down
6 changes: 3 additions & 3 deletions src/FunField/IntClsZx.jl
Original file line number Diff line number Diff line change
Expand Up @@ -213,9 +213,9 @@ using .HessMain
#=
this should work:
Qt, t = RationalFunctionField(QQ, "t")
Qt, t = rational_function_field(QQ, "t")
Qtx, x = polynomial_ring(Qt, "x")
F, a = FunctionField(x^6+27*t^2+108*t+108, "a")
F, a = function_field(x^6+27*t^2+108*t+108, "a")
integral_closure(parent(denominator(t)), F)
integral_closure(localization(Qt, degree), F)
integral_closure(Hecke.Globals.Zx, F)
Expand All @@ -228,6 +228,6 @@ integral_closure(localization(ZZ, 2), k)
more interesting and MUCH harder:
G, b = FunctionField(x^6 + (140*t - 70)*x^3 + 8788*t^2 - 8788*t + 2197, "b")
G, b = function_field(x^6 + (140*t - 70)*x^3 + 8788*t^2 - 8788*t + 2197, "b")
=#
8 changes: 4 additions & 4 deletions src/GenOrd/Auxiliary.jl
Original file line number Diff line number Diff line change
Expand Up @@ -73,19 +73,19 @@ function hnf_modular(M::MatElem{T}, d::T, is_prime::Bool = false) where {T}
end

function function_field(f::PolyElem{<:Generic.RationalFunctionFieldElem}, s::String = "_a"; check::Bool = true, cached::Bool = false)
return FunctionField(f, s, cached = cached)
return function_field(f, s, cached = cached)
end

function function_field(f::PolyElem{<:Generic.RationalFunctionFieldElem}, s::Symbol; check::Bool = true, cached::Bool = false)
return FunctionField(f, s, cached = cached)
return function_field(f, s, cached = cached)
end

function extension_field(f::PolyElem{<:Generic.RationalFunctionFieldElem}, s::String = "_a"; check::Bool = true, cached::Bool = false)
return FunctionField(f, s, cached = cached)
return function_field(f, s, cached = cached)
end

function extension_field(f::PolyElem{<:Generic.RationalFunctionFieldElem}, s::Symbol; check::Bool = true, cached::Bool = false)
return FunctionField(f, s, cached = cached)
return function_field(f, s, cached = cached)
end

function Hecke.basis(F::Generic.FunctionField)
Expand Down
6 changes: 3 additions & 3 deletions test/EllCrv/LocalData.jl
Original file line number Diff line number Diff line change
Expand Up @@ -316,7 +316,7 @@
@test @inferred kodaira_symbol(E, P) == "I0"

# rational function field
QQt, t = RationalFunctionField(QQ, "t")
QQt, t = rational_function_field(QQ, "t")
E = elliptic_curve_from_j_invariant(t)
_, K, f, c, s = tates_algorithm_local(E, 1//t)
@test K == "I1"
Expand Down Expand Up @@ -356,7 +356,7 @@
@test s == true

k, a = quadratic_field(2)
kt, t = RationalFunctionField(k, "t")
kt, t = rational_function_field(k, "t")
E = elliptic_curve_from_j_invariant(1//(t^2 + t + a))

_, K, f, c, s = tates_algorithm_local(E, 1//t)
Expand All @@ -377,7 +377,7 @@
@test c == 1
@test s == true

kt, t = RationalFunctionField(GF(2), "t")
kt, t = rational_function_field(GF(2), "t")
E = elliptic_curve_from_j_invariant(t^3/(t^2 + t + 1))
_, K, f, c, s = tates_algorithm_local(E, t^2 + t + 1)
@test K == "I1"
Expand Down
4 changes: 2 additions & 2 deletions test/EllCrv/MinimalModels.jl
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@
end

# _minimize and integral model
Kt, t = RationalFunctionField(QQ, "t")
Kt, t = rational_function_field(QQ, "t")
E = EllipticCurve(Kt.([0, t^21, 1//216, -7//1296, 1//t]))
EE, = integral_model(E)
@test all(p -> is_one(denominator(p)) && is_one(denominator(numerator(p))), a_invars(EE))
Expand All @@ -63,7 +63,7 @@

Qx, x = QQ["x"]
K, z = number_field(x^2 + 1, "z", cached = false)
Kt, t = RationalFunctionField(K, "t")
Kt, t = rational_function_field(K, "t")
E = EllipticCurve(Kt.([0, t^21, (z + 1)//216, -7//1296, (z + 3)//t]))
EE, = integral_model(E)
EE = Hecke.reduce_model(E)
Expand Down
2 changes: 1 addition & 1 deletion test/FunField/DegreeLocalization.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@

R, x = RationalFunctionField(QQ, "x")
R, x = rational_function_field(QQ, "x")
L = localization(R, degree)

@testset "DegreeLocalization" begin
Expand Down
2 changes: 1 addition & 1 deletion test/FunField/Differential.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ import Hecke: divisor
flds = [QQ, rationals_as_number_field()[1]]

@testset "Differentials" for k in flds
kx, x = RationalFunctionField(k, "x")
kx, x = rational_function_field(k, "x")
kt = parent(numerator(x))
ky, y = polynomial_ring(kx, "y")

Expand Down
2 changes: 1 addition & 1 deletion test/FunField/Divisor.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
k = QQ
kx, x = RationalFunctionField(k, "x")
kx, x = rational_function_field(k, "x")
kt = parent(numerator(x))
ky, y = polynomial_ring(kx, "y")

Expand Down
2 changes: 1 addition & 1 deletion test/GenOrd/GenOrd.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ end
test_Ring_interface(O)

k = GF(5)
kx, x = RationalFunctionField(k, "x")
kx, x = rational_function_field(k, "x")
kt = parent(numerator(x))
ky, y = polynomial_ring(kx, "y")
F, a = function_field(y^3+(4*x^3 + 4*x^2 + 2*x +2)*y^2 + (3*x+3)*y +2)
Expand Down
4 changes: 2 additions & 2 deletions test/GenOrd/Ideal.jl
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
@testset "Ideals for orders over function fields" begin

k = GF(7)
kx, x = RationalFunctionField(k, "x")
kx, x = rational_function_field(k, "x")
kt = parent(numerator(x))
ky, y = polynomial_ring(kx, "y")
F, a = function_field(y^2+x)
Expand All @@ -26,7 +26,7 @@


k = QQ
kx, x = RationalFunctionField(k, "x")
kx, x = rational_function_field(k, "x")
kt = parent(numerator(x))
ky, y = polynomial_ring(kx, "y")
F, a = function_field(y^2+x*y+x^3+y^3)
Expand Down
10 changes: 5 additions & 5 deletions test/GenOrd/MaximalOrder.jl
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
@testset "Qt" begin
qt, t = RationalFunctionField(QQ, "t")
qt, t = rational_function_field(QQ, "t")
qtx, x = polynomial_ring(qt, "x")
f = x^4 + t*x^3 - 6*x^2 - t*x + 1
F, a = FunctionField(f, "a")
F, a = function_field(f, "a")
O = integral_closure(Hecke.localization(qt, degree), F)
b = basis(O, F)
mp = map(minpoly, b)
Expand All @@ -24,16 +24,16 @@ end

@testset "FldFin" begin
for q = [GF(17), GF(next_prime(ZZRingElem(10)^30)), finite_field(5, 2)[1], finite_field(next_prime(ZZRingElem(10)^25), 2, "a", cached = false)[1]]
qt, t = RationalFunctionField(q, "t", cached = false)
qt, t = rational_function_field(q, "t", cached = false)
qtx, x = polynomial_ring(qt, cached = false)
f = x^3+(t+1)^5*(x+1)+(t^2+t+1)^7
F, a = FunctionField(f, "a", cached = false)
F, a = function_field(f, "a", cached = false)
integral_closure(parent(numerator(t)), F)
integral_closure(localization(qt, degree), F)
end

k = GF(5)
kx, x = RationalFunctionField(k, "x")
kx, x = rational_function_field(k, "x")
kt = parent(numerator(x))
ky, y = polynomial_ring(kx, "y")
F, a = function_field(y^3+(4*x^3 + 4*x^2 + 2*x +2)*y^2 + (3*x+3)*y +2)
Expand Down
2 changes: 1 addition & 1 deletion test/Misc/Poly.jl
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,7 @@ end
@test @inferred is_squarefree(x * (x + 1))
@test @inferred !is_squarefree(x * (x + 1)^2)

F, a = RationalFunctionField(GF(3), "a")
F, a = rational_function_field(GF(3), "a")
Fx, x = F["x"]
@test @inferred is_squarefree(x)
@test @inferred is_squarefree(2*x^0)
Expand Down

0 comments on commit ca9da35

Please sign in to comment.