Skip to content

thu-rllab/DMG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

3 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Doubly Mild Generalization for Offline Reinforcement Learning

Code for NeurIPS 2024 accepted paper: Doubly Mild Generalization for Offline Reinforcement Learning.

πŸ”§ Environment

Paper results were collected with MuJoCo 210 (and mujoco-py 2.1.2.14) in OpenAI gym 0.23.1 with the D4RL datasets. Networks are trained using PyTorch 1.11.0 and Python 3.7.

πŸš€ Usage

Offline RL Training

Use the following command to train offline RL on D4RL, including Gym locomotion and Antmaze tasks, and save the models.

python train_offline.py --env halfcheetah-medium-v2 --lam 0.25 --nu 0.1 --save_model
python train_offline.py --env antmaze-large-diverse-v2 --lam 0.25 --nu 0.5 --no_normalize --save_model

Offline-to-Online Finetuning

Use the following command to online fine-tune the pretrained offline models on AntMaze tasks.

python train_finetune.py --env antmaze-large-diverse-v2 --lam 0.25 --nu 0.5 --lam_end 0.5 --nu_end 0.005 --no_normalize

Logging

You can view saved runs using TensorBoard.

tensorboard --logdir <run_dir>

πŸ“ Citation

If you find this work useful, please consider citing:

@article{mao2024doubly,
  title={Doubly mild generalization for offline reinforcement learning},
  author={Mao, Yixiu and Wang, Qi and Qu, Yun and Jiang, Yuhang and Ji, Xiangyang},
  journal={Advances in Neural Information Processing Systems},
  volume={37},
  pages={51436--51473},
  year={2024}
}

About

NeurIPS 2024

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages