Skip to content

Commit

Permalink
Showing 1 changed file with 14 additions and 14 deletions.
28 changes: 14 additions & 14 deletions inst/doc/bootstrapping.html
Original file line number Diff line number Diff line change
@@ -274,16 +274,16 @@ <h1>Tidy bootstrapping with dplyr+broom</h1>
## Groups: replicate
##
## replicate term estimate stderror statistic p.value
## 1 1 k 44.315 4.612 9.6090 1.618e-10
## 2 1 b 4.947 1.973 2.5078 1.800e-02
## 3 2 k 40.004 3.977 10.0579 5.788e-11
## 4 2 b 7.074 1.524 4.6432 6.832e-05
## 5 3 k 55.617 5.161 10.7761 1.179e-11
## 6 3 b 1.178 1.804 0.6529 5.189e-01
## 7 4 k 42.556 3.103 13.7153 3.303e-14
## 8 4 b 4.824 1.053 4.5803 8.132e-05
## 9 5 k 51.902 5.271 9.8472 6.540e-11
## 10 5 b 3.222 1.945 1.6561 1.081e-01
## 1 1 k 40.883 4.260 9.598 1.179e-10
## 2 1 b 6.434 1.531 4.202 2.185e-04
## 3 2 k 52.013 4.797 10.842 1.022e-11
## 4 2 b 3.119 1.827 1.707 9.857e-02
## 5 3 k 45.412 3.669 12.377 2.565e-13
## 6 3 b 4.055 1.311 3.093 4.256e-03
## 7 4 k 43.474 4.358 9.975 6.986e-11
## 8 4 b 5.539 1.615 3.431 1.829e-03
## 9 5 k 34.995 3.585 9.763 1.135e-10
## 10 5 b 8.428 1.298 6.491 4.181e-07
## .. ... ... ... ... ... ...
</code></pre>

@@ -296,9 +296,9 @@ <h1>Tidy bootstrapping with dplyr+broom</h1>

<pre><code>## Source: local data frame [2 x 3]
##
## term low high
## 1 b 1.296 7.449
## 2 k 37.423 55.670
## term low high
## 1 b 0.08649 6.86
## 2 k 38.08916 60.98
</code></pre>

<p>Or you can use histograms to give you a more detailed idea of the uncertainty in each estimate:</p>
@@ -307,7 +307,7 @@ <h1>Tidy bootstrapping with dplyr+broom</h1>
ggplot(bootnls, aes(estimate)) + geom_histogram(binwidth=2) + facet_wrap(~ term, scales=&quot;free&quot;)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-7"/> </p>
<p><img src="" alt="plot of chunk unnamed-chunk-7"/> </p>

<p>With only a few small changes, one could easily perform bootstrapping with other kinds of predictive or hypothesis testing models, since the <code>tidy</code> function works for many stats outputs.</p>

0 comments on commit af2c1de

Please sign in to comment.