Skip to content

tkue521/108_ZhangBoHan

Repository files navigation

GRAGAN

Dependencies

python 3.6+

Pytorch 1.0+

In addition, please add the project folder to PYTHONPATH and pip install the following packages:

  • python-dateutil
  • easydict
  • pandas
  • torchfile
  • nltk
  • scikit-image

Data

  1. Download our preprocessed metadata for birds coco and save them to data/
  2. Download the birds image data. Extract them to data/birds/
  3. Download coco dataset and extract the images to data/coco/

Training

  • Pre-train DAMSM models:

    • For bird dataset: python pretrain_DAMSM.py --cfg cfg/DAMSM/bird.yml --gpu 0
    • For coco dataset: python pretrain_DAMSM.py --cfg cfg/DAMSM/coco.yml --gpu 1
  • Train GRAGAN models:

    • For bird dataset: python main.py --cfg cfg/bird_attn2.yml --gpu 2
    • For coco dataset: python main.py --cfg cfg/coco_attn2.yml --gpu 3
  • *.yml files are example configuration files for training/evaluation our models.

Pretrained Model

Sampling

  • Run python main.py --cfg cfg/eval_bird.yml --gpu 1 to generate examples from captions in files listed in "./data/birds/example_filenames.txt". Results are saved to DAMSMencoders/.
  • Change the eval_*.yml files to generate images from other pre-trained models.
  • Input your own sentence in "./data/birds/example_captions.txt" if you wannt to generate images from customized sentences.

Validation

  • To generate images for all captions in the validation dataset, change B_VALIDATION to True in the eval_*.yml. and then run python main.py --cfg cfg/eval_bird.yml --gpu 1
  • We compute inception score for models trained on birds using StackGAN-inception-model.
  • We compute inception score for models trained on coco using improved-gan/inception_score.

Reference

final image

  • Image text Image text

  • 嘻嘻Johnny Yeng

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages