Parses Papertrail logs to show context and historical reflection of Python assertions.
At a high level, here's the steps we perform:
- Papertrail generates archives of all its logs once per hour
- S3 triggers a Lambda function that calls our API (passing along the new log file's filename)
- we download the log file and parse it for Python tracebacks. we save the tracebacks to ElasticSearch
- we provide a Jinja templated site to show these tracebacks to our users
We take the archived Papertrail logs in .tsv.gz format and unzip them. We search them for any errors. When an error is found, we go backwards in the logs to find the root cause (context) of the assertion, which includes the traceback and the log lines before the traceback. We do this by determining the instance ID of the machine that had the assertion and searching the logs for the lines on that machine previous to the offending line.
We run everything in kubernetes. Please set up kubectl locally and connect to a kubernetes cluster. Then, on your development machine...
- install kubernetes-helm
- clone this repo
- fill out .env with config variables. requires these fields:
DEBUG_LOGGING = False # enables logging to file, very verbose
# token for Papertrail CLI access. used by realtime-updater
PAPERTRAIL_API_TOKEN=123456789012345678901234567890ab
# token for FullStory access. used to create links to FullStory
FULLSTORY_AUTH_TOKEN=123456789012345678901234567890ab
# databases/storage
ES_ADDRESS = <url to ElasticSearch database>
REDIS_ADDRESS = <url to Redis database>
USE_DOGPILE_CACHE = <True if we should use the dogpile cache>
# jira account to use for getting and creating issues
JIRA_SERVER = <url of the jira server. example: 'https://example.atlassian.net>
JIRA_BASIC_AUTH_USERNAME=name@server.com
JIRA_BASIC_AUTH_PASSWORD=hunter2
JIRA_PROJECT_KEY = <the project key of your JIRA project. example: 'SAN'>
# to download papertrail archives from s3
S3_BUCKET = <s3 bucket name. example: 'papertrail_log_bucket'>
S3_KEY_PREFIX = <prefix of papertrail logs in s3. example: 'papertrail/logs'>
AWS_ACCESS_KEY_ID=ASDFKJ87979898798798
AWS_SECRET_ACCESS_KEY=DFnkjdfkjdkFJDKFJkdsjfDFJKJKDFjkdfjkddkk # to download papertrail archives from s3
AWS_REGION=us-east-1 # to download papertrail archives from s3
# configuring the nginx AWS load balancer
AWS_SSL_CERT=arn:aws:acm:us-east-1:00000000000000:certificate/00000000-0000-0000-0000-000000000000
AWS_EXTRA_SECURITY_GROUP=sg-00000000000000
- fill out .env.papertrail with config variables. requires these fields:
# logging
papertrail-destination=syslog://logs9.papertrailapp.com:12345
Then to start it all up:
make fresh-deploy-to-k8s
For production, Elasticsearch database must be externally hosted. The IP of the host server must be whitelisted.
Set up the mapping for the indexes by running ./scripts/setup-es-database.sh
- pip install virtualenvwrapper
- set up virtualenvwrapper
- add this to your .bashrc:
export WORKON_HOME=$HOME/.virtualenvs
export PROJECT_HOME=$HOME/Devel
source /usr/local/bin/virtualenvwrapper.sh
source .bashrc
to enable virtualenvwrapper- (if not installed)
yum install -y python34-virtualenv
- (if not installed)
- mkvirtualenv -p python3
- pip install -r requirements.txt
Once python is installed, tests can be run with
make test
Use this command to use a username and password to log into docker. This allows you to push built images to dockerhub:
docker login
Enable Papertrail's "archive to s3" feature
Create an SNS topic to trigger a Lambda function whenever a Papertrail log file is added to your s3 archive. The Lambda function should call our api (/api/parse_s3) with the bucket and key of the log file.
Example lambda function:
import json
import requests
import urllib
import boto3
print('Loading function')
s3 = boto3.client('s3')
API_HOST_URL = # the URL of your app server
API_ENDPOINT = '/api/parse_s3'
API_REQUEST_URL = API_HOST_URL + API_ENDPOINT
def lambda_handler(event, context):
# print("Received event: " + json.dumps(event, indent=2))
# Get the object from the event and show its content type
bucket = event['Records'][0]['s3']['bucket']['name']
key = urllib.unquote_plus(event['Records'][0]['s3']['object']['key'].encode('utf8'))
payload = {
"bucket": bucket,
"key": key,
}
print payload
res = requests.post(API_REQUEST_URL, json=payload)
if res.status_code in (200, 202):
print('Successfully parsed "%s"' % key)
else:
print('Parse request received %s. data: "%s"' % (res.status_code, payload))
raise Exception('parse request failed. payload: %s', payload)
Configure a webhook in Jira to send a message every time a Jira ticket is updated. Point that webhook at an API gateway. Point the API gateway at a lambda function like this:
import json
import requests
import config
print('Loading function')
API_HOST_URL = config.API_HOST_URL
API_ENDPOINT = config.API_ENDPOINT
API_REQUEST_URL = API_HOST_URL + API_ENDPOINT
def lambda_handler(event, _):
print("Received event: " + json.dumps(event))
key = json.loads(event['body'])['issue']['key']
payload = {
'issue_key': key
}
print('making request: %s' % payload)
res = requests.put(API_REQUEST_URL, json=payload)
if res.status_code == 200:
print('Successfully updated "%s"' % key)
elif res.status_code == 202:
print('Successfully queued "%s"' % key)
else:
print(
'request failed. received response: %s. our payload: "%s"' %
(res.status_code, payload)
)
raise
return {'key': key}
Where config.py is
API_HOST_URL = # the URL of your app server
API_ENDPOINT = '/api/update_jira_db'
The istio template was created with this command:
helm template istio-1.0.2/install/kubernetes/helm/istio --name istio --namespace istio-system --set tracing.enabled=true --set global.proxy.includeIPRanges="109.96.0.1/16" -x templates/sidecar-injector-configmap.yaml > kubernetes-istio/istio.yaml