-
Updated
May 3, 2024 - Jupyter Notebook
#
handling-categorical-values
Here are 2 public repositories matching this topic...
feature-creation relationship-between-features column-normalization column-standardization handling-categorical-values missing-values---outlier-treatment
* Basis EDA * Handling Null/Missing Values * Handling Outliers * Handling Skewness * Handling Categorical Features * Data Normalization and Scaling * Feature Engineering *Accuracy score *Confusion matrix *Classification report
heatmap eda confusion-matrix scaling feature-engineering data-normalization classification-report standarization accuracy-score handling-missing-value handling-outlier handling-categorical-values handling-skewness
-
Updated
Jun 4, 2024 - Jupyter Notebook
Improve this page
Add a description, image, and links to the handling-categorical-values topic page so that developers can more easily learn about it.
Add this topic to your repo
To associate your repository with the handling-categorical-values topic, visit your repo's landing page and select "manage topics."