Hyperbolic Learning Rate Scheduler
-
Updated
Dec 2, 2024 - Python
Hyperbolic Learning Rate Scheduler
This project modifies the classic VGG16 architecture to classify images into four distinct categories with high accuracy. It incorporates data augmentation, dynamic learning rate adjustments, and comprehensive performance evaluation using accuracy metrics and confusion matrices. Built with PyTorch and supported by a suite of powerful libraries
PyTorch implementation of the generalized Newton's method for learning rate selection
Add a description, image, and links to the learning-rate-scheduler topic page so that developers can more easily learn about it.
To associate your repository with the learning-rate-scheduler topic, visit your repo's landing page and select "manage topics."