MegEngine 是一个快速、可拓展、易于使用且支持自动求导的深度学习框架
-
Updated
Oct 24, 2024 - C++
MegEngine is a fast, scalable and easy-to-use deep learning framework, with auto-differentiation.
MegEngine 是一个快速、可拓展、易于使用且支持自动求导的深度学习框架,具备训练推理一体、全平台高效支持和动静结合的训练能力 3 大核心优势,可帮助企业与开发者大幅节省产品从实验室原型到工业部署的流程,真正实现小时级的转化能力。
MegEngine 是一个快速、可拓展、易于使用且支持自动求导的深度学习框架
Python package containing all custom layers used in Neural Networks (Compatible with PyTorch, TensorFlow and MegEngine)
The official MegEngine implementation of the ECCV 2022 paper: Ghost-free High Dynamic Range Imaging with Context-aware Transformer
Official MegEngine implementation of ECCV2022 "D2C-SR: A Divergence to Convergence Approach for Real-World Image Super-Resolution".
MegEngine Official Documentation
Official implementation of the FST-Matching Model.
An object detection codebase based on MegEngine.
MegEngine implementation of Diffusion Models.
MegBox is an easy-to-use, well-rounded and safe toolbox of MegEngine. Aim to imporving usage experience and speeding up develop process.
Experimental Operator Library for MegEngine
Created by Megvii
Latest release almost 2 years ago