Adaptive foreground-background segmentation using Gaussian Mixture Models (GMMs)
-
Updated
Sep 6, 2018 - Jupyter Notebook
Adaptive foreground-background segmentation using Gaussian Mixture Models (GMMs)
在该项目中,你将使用强化学习算法,实现一个自动走迷宫机器人。
Personal capstone project for Udacity's Machine Learning Nanodegree (MLND).
Udacity机器学习进阶,非监督学习,创建用户分类
在这个项目中,你将使用分类模型通过原料的不同组合预测所属的世界菜系。你将使用之前课程中所学习到的模型训练、测试技巧,并得到最终的分数,上传到 Kaggle 网站上。
Capstone Nanodegree Project, supervised learning regression, testing several algorithms like XGBoost
p0-Titanic - Udacity Machine Learning nanodegree (MLnd)
Boston Housing Prices -- Udacity MLND
Finding Charity Donors -- Udacity MLND
In this project I will employ several supervised algorithms to accurately model individuals' income using data collected from the 1994 U.S. Census.
Creating Customer Segments -- Udacity MLND
Projects for Udacity Machine Learning Nanodegree.
Implementing an image classifier with TensorFlow to recognize different species of flowers.
Add a description, image, and links to the mlnd topic page so that developers can more easily learn about it.
To associate your repository with the mlnd topic, visit your repo's landing page and select "manage topics."