Table of Contents
pip install configuraptor
Configuraptor can be used to load your config files into structured Python classes.
# examples/example_from_readme.toml
[config]
name = "Hello World!"
[config.reference]
number = 42
numbers = [41, 43]
string = "42"
Could be loaded into Python classes using the following code:
# examples/example_from_readme.py
from configuraptor import load_into, TypedConfig
######################
# with basic classes #
######################
class SomeRegularClass:
number: int
numbers: list[int]
string: str
class Config:
name: str
reference: SomeRegularClass
if __name__ == '__main__':
my_config = load_into(Config, "example_from_readme.toml") # or .json, .yaml, ...
print(my_config.name)
# Hello World!
print(my_config.reference.numbers)
# [41, 43]
########################
# alternative notation #
########################
class SomeOtherRegularClass:
number: int
numbers: list[int]
string: str
class OtherConfig(TypedConfig):
name: str
reference: SomeRegularClass
if __name__ == '__main__':
my_config = OtherConfig.load("https://api.my-server.dev/v1/config.json?secret=token") # or .toml, .yaml, ...
print(my_config.name)
# Hello World!
print(my_config.reference.numbers)
# [41, 43]
# TypedConfig has an extra benefit of allowing .update:
my_config.update(numbers=[68, 70])
The second argument of .load_into
and the first argument of .load
(which is "example_from_readme.toml"
in the
examples above), can be either a string or a Path to a file, a raw dictionary with data, a URL or empty.
You can also use a list of these options to combine data sources.
If it is left empty, the pyproject.toml
will be used. You can supply a key='tool.mytool.myconf'
to specify which
section of the file should be read. For HTTP authentication, currently you can use http basic
auth (https://user:pass@host
or query parameters (like ?token=...
)).
Other authentication methods are not currently supported.
More examples can be found in examples.
.toml
: supports the most types (strings, numbers, booleans, datetime, lists/arrays, dicts/tables);.json
: supports roughly the same types as toml (except datetime);.yaml
: supports roughly the same types as toml, backwards compatible with JSON;.env
: only supports strings. You can useconvert_types=True
to try to convert to your annotated types;.ini
: only supports strings. You can useconvert_types=True
to try to convert to your annotated types;
For other file types, a custom Loader can be written. See examples/readme.md#Custom File Types
You can also parse a struct
-packed bytestring into a config class.
For this, you have to use BinaryConfig
with
BinaryField
s. Annotations are not supported in this case, because the order of properties is important for this type
of config.
from configuraptor import BinaryConfig, BinaryField
class MyBinaryConfig(BinaryConfig):
# annotations not supported! (because mixing annotation and __dict__ lookup messes with the order,
# which is important for struct.(un)pack
number = BinaryField(int)
string = BinaryField(str, length=5)
decimal = BinaryField(float)
double = BinaryField(float, format="d")
other_string = BinaryField(str, format="10s")
boolean = BinaryField(bool)
MyBinaryConfig.load(
b'*\x00\x00\x00Hello\x00\x00\x00fff@\xab\xaa\xaa\xaa\xaa\xaa\n@Hi\x00\x00\x00\x00\x00\x00\x00\x00\x01')
configuraptor
is distributed under the terms of the MIT license.