Databricks input plugin for Embulk loads records from Databricks.
- Plugin type: input
- Resume supported: yes
- driver_path: path to the jar file of the JDBC driver. If not set, the bundled JDBC driver will be used. (string, optional)
- options: extra JDBC properties (hash, default: {})
- user_agent: set user agent property to JDBC connection. If 'UserAgentEntry' property is specified in the options, it will be overwritten by this value. (hash, optional)
- product_name: product name of user agent (string, default: "unknown")
- product_version: product version of user agent (string, default: "0.0.0")
- server_hostname: The Databricks compute resource’s Server Hostname value, see Compute settings for the Databricks JDBC Driver. (string, required)
- http_path: The Databricks compute resource’s HTTP Path value, see Compute settings for the Databricks JDBC Driver. (string, required)
- auth_type: The Databricks authentication type, personal access token (PAT)-based or machine-to-machine (M2M) authentication. (
pat
,oauth-m2m
, default:pat
) - If auth_type is
pat
,- personal_access_token: The Databaricks personal_access_token, see Authentication settings for the Databricks JDBC Driver. (string, required)
- If auth_type is
m2m-auth
,- oauth2_client_id: The Databaricks oauth2_client_id, see Use a service principal to authenticate with Databricks. (string, required)
- oauth2_client_secret: The Databaricks oauth2_client_secret, see Use a service principal to authenticate with Databricks. (string, required)
- catalog_name: destination catalog name (string, optional)
- schema_name: destination schema name (string, optional)
- where: WHERE condition to filter the rows (string, default: no-condition)
- fetch_rows: number of rows to fetch one time (used for java.sql.Statement#setFetchSize) (integer, default: 10000)
- connect_timeout: timeout for establishment of a database connection. (integer (seconds), default: 300)
- socket_timeout: timeout for socket read operations. 0 means no timeout. (integer (seconds), default: 1800)
- If you write SQL directly,
- query: SQL to run (string)
- If query is not set,
- table: destination table name (string, required)
- select: expression of select (e.g.
id, created_at
) (string, default: "*") - where: WHERE condition to filter the rows (string, default: no-condition)
- order_by: expression of ORDER BY to sort rows (e.g.
created_at DESC, id ASC
) (string, default: not sorted)
- incremental: if true, enables incremental loading. See next section for details (boolean, default: false)
- incremental_columns: column names for incremental loading (array of strings, default: use primary keys). Columns of integer types, string types,
timestamp
are supported. - last_record: values of the last record for incremental loading (array of objects, default: load all records)
- default_timezone: If the sql type of a column is
date
/time
/datetime
and the embulk type isstring
, column values are formatted int this default_timezone. You can overwrite timezone for each columns using column_options option. (string, default:UTC
) - default_column_options: advanced: column_options for each JDBC type as default. key-value pairs where key is a JDBC type (e.g. 'DATE', 'BIGINT') and value is same as column_options's value.
- column_options: advanced: key-value pairs where key is a column name and value is options for the column.
- value_type: embulk get values from database as this value_type. Typically, the value_type determines
getXXX
method ofjava.sql.PreparedStatement
. (string, default: depends on the sql type of the column. Available values options are:long
,double
,float
,decimal
,boolean
,string
,json
,date
,time
,timestamp
) - type: Column values are converted to this embulk type.
Available values options are:
boolean
,long
,double
,string
,json
,timestamp
). By default, the embulk type is determined according to the sql type of the column (or value_type if specified). - timestamp_format: If the sql type of the column is
date
/time
/datetime
and the embulk type isstring
, column values are formatted by this timestamp_format. And if the embulk type istimestamp
, this timestamp_format may be used in the output plugin. For example, stdout plugin use the timestamp_format, but csv formatter plugin doesn't use. (string, default :%Y-%m-%d
fordate
,%H:%M:%S
fortime
,%Y-%m-%d %H:%M:%S
fortimestamp
) - timezone: If the sql type of the column is
date
/time
/datetime
and the embulk type isstring
, column values are formatted in this timezone. (string, value of default_timezone option is used by default)
- value_type: embulk get values from database as this value_type. Typically, the value_type determines
- before_setup: if set, this SQL will be executed before setup. You can prepare table for input by this option.
- before_select: if set, this SQL will be executed before the SELECT query. (Other plugins execute query in the same transaction, but Databricks does not support transaction in multi statement, so this plugin does not support it.)
- after_select: if set, this SQL will be executed after the SELECT query. (Other plugins execute query in the same transaction, but Databricks does not support transaction in multi statement, so this plugin does not support it.)
Incremental loading uses monotonically increasing unique columns (such as auto-increment (IDENTITY) column) to load records inserted (or updated) after last execution.
First, if incremental: true
is set, this plugin loads all records with additional ORDER BY. For example, if incremental_columns: [updated_at, id]
option is set, query will be as following:
SELECT * FROM (
...original query is here...
)
ORDER BY updated_at, id
When bulk data loading finishes successfully, it outputs last_record:
paramater as config-diff so that next execution uses it.
At the next execution, when last_record:
is also set, this plugin generates additional WHERE conditions to load records larger than the last record. For example, if last_record: ["2017-01-01T00:32:12.487659", 5291]
is set,
SELECT * FROM (
...original query is here...
)
WHERE updated_at > '2017-01-01 00:32:12.487659' OR (updated_at = '2017-01-01 00:32:12.487659' AND id > 5291)
ORDER BY updated_at, id
Then, it updates last_record:
so that next execution uses the updated last_record.
IMPORTANT: If you set incremental_columns:
option, make sure that there is an index on the columns to avoid full table scan. For this example, following index should be created:
CREATE INDEX embulk_incremental_loading_index ON table (updated_at, id);
Recommended usage is to leave incremental_columns
unset and let this plugin automatically finds an auto-increment (IDENTITY) primary key. Currently, only strings, integers, TIMESTAMP and TIMESTAMPTZ are supported as incremental_columns.
in:
type: databricks
server_hostname: dbc-xxxx.cloud.databricks.com
http_path: /sql/1.0/warehouses/xxxxx
personal_access_token: dapixxxxxx
catalog_name: test_catalog
schema_name: test_schema
table: test_date
select: "col1, col2, col3"
where: "col4 != 'a'"
order_by: "col1 DESC"
This configuration will generate following SQL:
SELECT col1, col2, col3
FROM "my_table"
WHERE col4 != 'a'
ORDER BY col1 DESC
If you need a complex SQL,
in:
type: databricks
server_hostname: dbc-xxxx.cloud.databricks.com
http_path: /sql/1.0/warehouses/xxxxx
personal_access_token: dapixxxxxx
catalog_name: test_catalog
query: |
SELECT t1.id, t1.name, t2.id AS t2_id, t2.name AS t2_name
FROM table1 AS t1
LEFT JOIN table2 AS t2
ON t1.id = t2.t1_id
Advanced configuration:
in:
type: databricks
server_hostname: dbc-xxxx.cloud.databricks.com
http_path: /sql/1.0/warehouses/xxxxx
personal_access_token: dapixxxxxx
catalog_name: test_catalog
schema_name: test_schema
table: test_date
select: "col1, col2, col3"
where: "col4 != 'a'"
default_column_options:
TIMESTAMP: { type: string, timestamp_format: "%Y/%m/%d %H:%M:%S", timezone: "+0900"}
BIGINT: { type: string }
column_options:
col1: {type: long}
col3: {type: string, timestamp_format: "%Y/%m/%d", timezone: "+0900"}
after_select: "update my_table set col5 = '1' where col4 != 'a'"
databrick types | JDBC Types |
---|---|
BIGINT | BIGINT |
BINARY | unsupported |
BOOLEAN | BOOLEAN |
DATE | DATE |
DECIMAL | DECIMAL |
DOUBLE | DOUBLE |
FLOAT | REAL |
INT | INTEGER |
INTERVAL | VARCHAR |
SMALLINT | SMALLINT |
STRING | VARCHAR |
TIMETAMP | TIMESTAMP |
TIMETAMP_NTZ | unsupported |
TINYINT | TINYINT |
ARRAY | VARCHAR |
MAP | VARCHAR |
STRUCT | VARCHAR |
The official Databricks JDBC driver does not support TIMESTAMP_NTZ, so this plugin officially does not support TIMESTAMP_NTZ.
$ ./gradlew gem
Running tests:
$ EMBULK_INPUT_DATABRICKS_TEST_CONFIG="example/test.yml" ./gradlew test # Create example/test.yml based on example/test.yml.example