Skip to content
/ agentic-sdlc Public template

The Intelligence Layer for your Software Development Lifecycle. Installable, scalable, and self-learning.

License

Notifications You must be signed in to change notification settings

truongnat/agentic-sdlc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

262 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

📦 Agentic SDLC - Multi-Domain Swarm Agent SDK

Version Build License

Next-generation AI Software Development Lifecycle framework with Swarm Intelligence, RAG-powered Research, and Multi-Provider LLM orchestration.

Agentic SDLC is a modular Python SDK for building autonomous development agents. It moves beyond simple prompt generation into a full E2E pipeline: Domain Detection → Research → Prompt Optimization → Swarm Execution → Self-Learning.


🚀 Key Features

  • 🧠 Swarm Intelligence: Multi-agent coordination (Developer, Reviewer, Tester, Researcher) with async message bus.
  • 🔍 RAG Research: Integrated Knowledge Base using ChromaDB and web-research capabilities.
  • 🎯 Domain Engine: Automatic task classification into 7+ technical domains (Frontend, Backend, DevOps, etc.).
  • 🧪 Prompt Lab: A/B testing for prompts with structured strategies and AI-powered evaluation.
  • 🤖 Multi-Provider LLM: Unified support for Gemini (primary), OpenAI, Anthropic, and Ollama (local).
  • 📈 Self-Learning: Continuous improvement engine that analyzes execution patterns and proposes enhancements.

📦 quick start

installation

pip install agentic-sdlc[all]  # Includes ChromaDB and ML dependencies

Basic E2E Pipeline

from agentic_sdlc import AgentBridge
from pathlib import Path

# Initialize bridge with preferred LLM
bridge = AgentBridge(
    project_dir=Path("."),
    llm_provider="gemini",
    llm_model="gemini-2.0-flash"
)

# Run full E2E pipeline
response = bridge.process_request_enhanced("Implement JWT auth in FastAPI")

print(f"Detected Domain: {response.metadata['domain']}")
print(f"Optimized Prompt: {response.skill_instructions[:100]}...")

🏗 Architecture

agentic_sdlc/
├── bridge/          # Primary E2E Pipeline (AgentBridge)
├── swarm/           # Swarm Intelligence (Orchestrator, MessageBus, Agents)
├── knowledge/       # RAG Layer (KnowledgeBase, VectorStore, Embeddings)
├── core/            # Config, Domain Engine, LLM Routing, Artifacts
├── prompts/         # Prompt Lab, Generator, Optimization
├── intelligence/    # Self-Learning, Reasoner
├── skills/          # Skill Registry & Generation
└── sdlc/            # Board & Task Tracking

📚 Documentation


🔌 Supported LLM Providers

Provider Model Tier
Google Gemini gemini-2.0-flash Free/Paid
OpenAI gpt-4o, gpt-4o-mini Paid
Anthropic claude-3-5-sonnet Paid
Ollama llama3.2, mistral FREE / Local

🧪 Testing

pytest tests/unit/swarm  # Test swarm multi-agent logic
pytest tests/unit/knowledge # Test RAG retrieval

📄 License

MIT License. Developed by Dao Quang Truong | GitHub