Skip to content

A Python client for Cube: Time Series Data Collection & Analysis

License

Notifications You must be signed in to change notification settings

tsileo/cube-client

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cube-client

A Python client for Cube: Time Series Data Collection & Analysis.

https://pypip.in/v/cube-client/badge.png https://pypip.in/d/cube-client/badge.png

Features

You can post (Collector) and request (Evaluator) data to/from Cube.

  • Post events
  • Request events
  • Request metrics
  • Request known event types

Overview

>>> from cube import Cube, ONE_HOUR
>>> c = Cube()
>>>
>>> c.put('sample_data', {'myval': 10})
[{'data': {'myval': 10}, 'type': 'sample_data', 'time': '2012-10-01T13:04:04.453929'}]

>>> c.event('sample_data')
[{u'time': u'2012-10-01T13:04:04.453Z'}]

>>> c.put('sample_data', {'myval': 20})
[{'data': {'myval': 20}, 'type': 'sample_data', 'time': '2012-10-01T13:04:39.725676'}]

>>> c.event('sample_data')
[{u'time': u'2012-10-01T13:04:04.453Z'}, {u'time': u'2012-10-01T13:04:39.725Z'}]

>>> c.event('sample_data(myval)')
[{u'data': {u'myval': 10}, u'time': u'2012-10-01T13:04:04.453Z'}, {u'data': {u'myval': 20}, u'time': u'2012-10-01T13:04:39.725Z'}]

>>> c.metric('sum(sample_data)', step=ONE_HOUR, start='2012-10-01')
[{u'value': 0, u'time': u'2012-10-01T00:00:00.000Z'}, {u'value': 0, u'time': u'2012-10-01T01:00:00.000Z'}, {u'value': 0, u'time': u'2012-10-01T02:00:00.000Z'}, {u'value': 0, u'time': u'2012-10-01T03:00:00.000Z'}, {u'value': 0, u'time': u'2012-10-01T04:00:00.000Z'}, {u'value': 0, u'time': u'2012-10-01T05:00:00.000Z'}, {u'value': 0, u'time': u'2012-10-01T06:00:00.000Z'}, {u'value': 0, u'time': u'2012-10-01T07:00:00.000Z'}, {u'value': 0, u'time': u'2012-10-01T08:00:00.000Z'}, {u'value': 0, u'time': u'2012-10-01T09:00:00.000Z'}, {u'value': 0, u'time': u'2012-10-01T10:00:00.000Z'}, {u'value': 0, u'time': u'2012-10-01T11:00:00.000Z'}, {u'value': 0, u'time': u'2012-10-01T12:00:00.000Z'}, {u'value': 2, u'time': u'2012-10-01T13:00:00.000Z'}]

Requirements

Installation

$ pip install cube-client

Usage

from cube import Cube, ONE_HOUR
from datetime import datetime

cube = Cube()
# or
cube = Cube('localhost')

# Create an event
cube.put("myevent", {'temp': 30})
# or
cube.put("myevent", {'temp': 30}, time=datetime.now().isoformat())

# Low level queries
# =================

# Request events data
# See Cube queries:
# https://github.com/square/cube/wiki/Queries#wiki-metric
cube.event('myevent(temp)')

# Request metrics
cube.metric('sum(myevent(temp))', step='36e5', start='2013-9-01'))
# or
cube.metric('sum(myevent(temp))', step=ONE_HOUR, start=datetime(2013, 9, 1))

# Request known event types
cube.types()

# High level queries
# ==================

from cube.expression import EventExpression, Sum
temp = EventExpression('myevent', 'temp')

cube.metric(Sum(temp), step=ONE_HOUR, start='2013-10-1')

Event helper

from cube import Cube, Event, Sum

cube = Cube()

my_event = cube.get_event('myevent')
# or
my_event = Event(cube, 'myevent')

my_event.put({'temp': 10})
my_event.put({'temp': 20})

my_event.event()
# [{u'time': u'2012-10-01T13:04:04.453Z'}, {u'time': u'2012-10-01T13:04:39.725Z'}]

my_event.event('myevent(temp)')

temp = my_event.expression('temp').gt('temp', 15)
# => myevent(temp).gt(temp, 15)

my_event.metric(Sum(temp))
# => my_event.metric('sum(myevent(temp).gt(temp, 15))')

Metric resolutions shortcut

  • TEN_SECOND for 1e4 - 10-second
  • ONE_MINUTE for 6e4 - 1-minute
  • FIVE_MINUTE for 3e5 - 5-minute
  • ONE_HOUR for 36e5 - 1-hour
  • ONE_DAY for 864e5 - 1-day
from cube import ONE_HOUR, FIVE_MINUTE

Time utils

from cube import ONE_HOUR
from cube.time_utils import timeago


c.metric('sum(myevent(key))', step=ONE_HOUR, start=timeago('6h'))

Changelog

0.2.0

Not released yet

  • Cleaned code (PEP8)
  • Compatible with requests 2.0
  • Added metric resolution shortcut
  • Added a Event helper
  • Merged some parts of pypercube, time_utils, EventExpression and Filter.

License (MIT)

Copyright (c) 2013 Thomas Sileo and Steven Buss

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About

A Python client for Cube: Time Series Data Collection & Analysis

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages