Skip to content

A PyTorch Library for Learning Pareto Front of Multi-Objective Problem

License

Notifications You must be signed in to change notification settings

tuantran23012000/LibMOP_Pareto_Front_Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LibMOP_Pareto_Front_Learning

LibMOP_Pareto_Front_Learning is an open-source library built on PyTorch for Learning Pareto Front of Multi-Objective Problem (MOP).

News

  • [Jun 04 2024]: Added support for Hyper-Transformer (ArXiv 2024). Many thanks to the author's help @Tuan.
  • [Jun 04 2024]: Added support for STCH (ArXiv 2024). Many thanks to the author's help @Tuan.
  • [Jun 04 2024]: Added support for TCH,LOG,PROD,UTILITY,COSINE (Neural Network 2024). Many thanks to the author's help @Tuan.
  • [Jun 03 2024]: Added support for EPO (ICML 2020). Many thanks to the author's help @Mahapatra.
  • [Jun 02 2024]: Added support for LS (ICLR 2021). Many thanks to the author's help @AvivNavon.

Supported Algorithms

LibMOP_Pareto_Front_Learning currently supports the following algorithms with MLP architecture (params = 61102) and Transformer architecture (params = 61202), hidden_dim = 100. We calculate Hypervolume Difference (HVD) to each of algorithms:

MLP architecture

Optimization Strategies Venues CVX2 Arguments
Linear Scalarization (LS) ICLR 2021 0.00052 --model_type mlp --solver LS
Exact Pareto Optimal Search (EPO) ICML 2020 0.00060 --model_type mlp --solver EPO
Weighted Chebyshev (TCH) Neural Network 2024 0.00095 --model_type mlp --solver TCH
Log Scalarization (LOG) Neural Network 2024 0.00097 --model_type mlp --solver LOG
Product Scalarization (PROD) Neural Network 2024 0.00090 --model_type mlp --solver PROD
Utility Scalarization (UTILITY) Neural Network 2024 0.00046 --model_type mlp --solver UTILITY
Cosine Scalarization (COSINE) Neural Network 2024 0.00161 --model_type mlp --solver COSINE
Smooth Weighted Chebyshev (STCH) ArXiv 2024 0.00047 --model_type mlp --solver STCH

Transformer architecture (Hyper-Trans)

Optimization Strategies Venues CVX2 Arguments
Linear Scalarization (LS) ICLR 2021 0.00057 --model_type trans --solver LS
Exact Pareto Optimal Search (EPO) ICML 2020 0.00054 --model_type trans --solver EPO
Weighted Chebyshev (TCH) Neural Network 2024 0.00052 --model_type trans --solver TCH
Log Scalarization (LOG) Neural Network 2024 0.00078 --model_type trans --solver LOG
Product Scalarization (PROD) Neural Network 2024 0.00080 --model_type trans --solver PROD
Utility Scalarization (UTILITY) Neural Network 2024 0.00045 --model_type trans --solver UTILITY
Cosine Scalarization (COSINE) Neural Network 2024 0.00731 --model_type trans --solver COSINE
Smooth Weighted Chebyshev (STCH) ArXiv 2024 0.00039 --model_type trans --solver STCH

Contact Us

If you have any question or suggestion, please feel free to contact us by raising an issue or sending an email to trananhtuan23012000@gmail.com.

License

LibMOP_Pareto_Front_Learning is released under the MIT license.

Releases

No releases published

Packages

No packages published

Languages