-
Notifications
You must be signed in to change notification settings - Fork 1
/
trainvae.py
178 lines (145 loc) · 5.9 KB
/
trainvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
""" Training VAE """
import argparse
from os.path import join, exists
from os import mkdir
import torch
import torch.utils.data
from torch import optim
from torch.nn import functional as F
from torchvision import transforms
from torchvision.utils import save_image
from models.vae import VAE
from utils.misc import save_checkpoint
from utils.misc import LSIZE, RED_SIZE
## WARNING : THIS SHOULD BE REPLACE WITH PYTORCH 0.5
from utils.learning import EarlyStopping
from utils.learning import ReduceLROnPlateau
from data.loaders import _RolloutDataset
parser = argparse.ArgumentParser(description='VAE Trainer')
parser.add_argument('--batch-size', type=int, default=32, metavar='N',
help='input batch size for training (default: 32)')
parser.add_argument('--epochs', type=int, default=1000, metavar='N',
help='number of epochs to train (default: 1000)')
parser.add_argument('--logdir', type=str, default='exp_vae', help='Directory where results are logged')
parser.add_argument('--noreload', action='store_true',
help='Best model is not reloaded if specified')
parser.add_argument('--nosamples', action='store_true',
help='Does not save samples during training if specified')
args = parser.parse_args()
cuda = torch.cuda.is_available()
torch.manual_seed(123)
# Fix numeric divergence due to bug in Cudnn
torch.backends.cudnn.benchmark = True
device = torch.device("cuda" if cuda else "cpu")
transform_train = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((RED_SIZE, RED_SIZE)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((RED_SIZE, RED_SIZE)),
transforms.ToTensor(),
])
dataset_train = _RolloutDataset('saved/lstm_dataset',
transform_train, train=True)
dataset_test = _RolloutDataset('saved/lstm_dataset',
transform_test, train=False)
train_loader = torch.utils.data.DataLoader(
dataset_train, batch_size=args.batch_size, shuffle=True, num_workers=1)
test_loader = torch.utils.data.DataLoader(
dataset_test, batch_size=args.batch_size, shuffle=True, num_workers=1)
model = VAE(1, LSIZE).to(device)
optimizer = optim.Adam(model.parameters())
scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=5)
earlystopping = EarlyStopping('min', patience=50)
# Reconstruction + KL divergence losses summed over all elements and batch
def loss_function(recon_x, x, mu, logsigma):
""" VAE loss function """
BCE = F.mse_loss(recon_x, x, reduction='sum')
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + 2 * logsigma - mu.pow(2) - (2 * logsigma).exp())
return BCE + KLD
def train(epoch):
""" One training epoch """
model.train()
dataset_train.load_next_buffer()
train_loss = 0
for batch_idx, data in enumerate(train_loader):
data = data.to(device)
# print(data.shape)
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
loss = loss_function(recon_batch, data, mu, logvar)
loss.backward()
train_loss += loss.item()
optimizer.step()
if batch_idx % 20 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.item() / len(data)))
print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_loader.dataset)))
def test():
""" One test epoch """
model.eval()
dataset_test.load_next_buffer()
test_loss = 0
with torch.no_grad():
for data in test_loader:
data = data.to(device)
recon_batch, mu, logvar = model(data)
test_loss += loss_function(recon_batch, data, mu, logvar).item()
test_loss /= len(test_loader.dataset)
print('====> Test set loss: {:.4f}'.format(test_loss))
return test_loss
# check vae dir exists, if not, create it
vae_dir = join(args.logdir, 'vae')
if not exists(vae_dir):
mkdir(vae_dir)
mkdir(join(vae_dir, 'samples'))
reload_file = join(vae_dir, 'best.tar')
if not args.noreload and exists(reload_file):
state = torch.load(reload_file)
print("Reloading model at epoch {}"
", with test error {}".format(
state['epoch'],
state['precision']))
model.load_state_dict(state['state_dict'])
optimizer.load_state_dict(state['optimizer'])
scheduler.load_state_dict(state['scheduler'])
earlystopping.load_state_dict(state['earlystopping'])
cur_best = None
for epoch in range(1, args.epochs + 1):
train(epoch)
test_loss = test()
scheduler.step(test_loss)
earlystopping.step(test_loss)
# checkpointing
best_filename = join(vae_dir, 'best.tar')
filename = join(vae_dir, 'checkpoint.tar')
is_best = not cur_best or test_loss < cur_best
if is_best:
cur_best = test_loss
save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'precision': test_loss,
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'earlystopping': earlystopping.state_dict()
}, is_best, filename, best_filename)
if not args.nosamples:
with torch.no_grad():
sample = torch.randn(RED_SIZE, LSIZE).to(device)
sample = model.decoder(sample).cpu()
save_image(sample.view(256, 1, RED_SIZE, RED_SIZE),
join(vae_dir, 'samples/sample_' + str(epoch) + '.png'))
if earlystopping.stop:
print("End of Training because of early stopping at epoch {}".format(epoch))
break