This repository has been archived by the owner on Nov 23, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 62
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 5c6048e
Showing
47 changed files
with
29,763 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
# Byte-compiled / optimized / DLL files | ||
__pycache__/ | ||
*.py[cod] | ||
*$py.class | ||
|
||
# C extensions | ||
*.so | ||
|
||
# Distribution / packaging | ||
.Python | ||
env/ | ||
build/ | ||
develop-eggs/ | ||
dist/ | ||
downloads/ | ||
eggs/ | ||
.eggs/ | ||
lib/ | ||
lib64/ | ||
parts/ | ||
sdist/ | ||
var/ | ||
wheels/ | ||
*.egg-info/ | ||
.installed.cfg | ||
*.egg | ||
|
||
# PyInstaller | ||
# Usually these files are written by a python script from a template | ||
# before PyInstaller builds the exe, so as to inject date/other infos into it. | ||
*.manifest | ||
*.spec | ||
|
||
# Installer logs | ||
pip-log.txt | ||
pip-delete-this-directory.txt | ||
|
||
# Unit test / coverage reports | ||
htmlcov/ | ||
.tox/ | ||
.coverage | ||
.coverage.* | ||
.cache | ||
nosetests.xml | ||
coverage.xml | ||
*.cover | ||
.hypothesis/ | ||
|
||
# Translations | ||
*.mo | ||
*.pot | ||
|
||
# Django stuff: | ||
*.log | ||
local_settings.py | ||
|
||
# Flask stuff: | ||
instance/ | ||
.webassets-cache | ||
|
||
# Scrapy stuff: | ||
.scrapy | ||
|
||
# Sphinx documentation | ||
docs/_build/ | ||
|
||
# PyBuilder | ||
target/ | ||
|
||
# Jupyter Notebook | ||
.ipynb_checkpoints | ||
|
||
# pyenv | ||
.python-version | ||
|
||
# celery beat schedule file | ||
celerybeat-schedule | ||
|
||
# SageMath parsed files | ||
*.sage.py | ||
|
||
# dotenv | ||
.env | ||
|
||
# virtualenv | ||
.venv | ||
venv/ | ||
ENV/ | ||
|
||
# Spyder project settings | ||
.spyderproject | ||
.spyproject | ||
|
||
# Rope project settings | ||
.ropeproject | ||
|
||
# mkdocs documentation | ||
/site | ||
|
||
# mypy | ||
.mypy_cache/ | ||
|
||
# cache dir | ||
snapshots/ | ||
*.swp | ||
*.so |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
Adaptive Affinity Fields for Semantic Segmentation | ||
|
||
The MIT License | ||
|
||
Copyright (c) Tsung-Wei Ke (UC Berkeley/ICSI), Jyh-Jing Hwang (UC Berkeley/ICSI), | ||
Ziwei Liu (UC Berkeley/ICSI), and Stella X. Yu (UC Berkeley/ICSI). | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in | ||
all copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | ||
THE SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
# Adaptive-Affinity-Field for Semantic Segmentation | ||
|
||
By [Tsung-Wei Ke*](https://www1.icsi.berkeley.edu/~twke/), Jyh-Jing Hwang*, [Ziwei Liu](https://liuziwei7.github.io/), | ||
and [Stella X. Yu](http://www1.icsi.berkeley.edu/~stellayu/) (* equal contribution) | ||
|
||
<img src="misc/architecture.png" width="720"> | ||
|
||
Semantic segmentation has made much progress with increasingly powerful pixel-wise classifiers and incorporating structural | ||
priors via Conditional Random Fields (CRF) or Generative Adversarial Networks (GAN). We propose a simpler alternative that | ||
learns to verify the spatial structure of segmentation during training only. Unlike existing approaches that enforce semantic | ||
labels on individual pixels and match labels between neighbouring pixels, we propose the concept of Adaptive Affinity Fields | ||
(AAF) to capture and match the semantic relations between neighbouring pixels in the label space. We use adversarial learning | ||
to select the optimal affinity field size for each semantic category. It is formulated as a minimax problem, optimizing our | ||
segmentation neural network in a best worst-case learning scenario. AAF is versatile for representing structures as a collection | ||
of pixel-centric relations, easier to train than GAN and more efficient than CRF without run-time inference. Our extensive evaluations | ||
on PASCAL VOC 2012, Cityscapes, and GTA5 datasets demonstrate its above-par segmentation performance and robust generalization across | ||
domains. | ||
|
||
AAF is published in ECCV 2018, see [our paper](https://arxiv.org/abs/1803.10335) for more details. | ||
|
||
### License | ||
AAF is released under the MIT License (refer to the LICENSE file for details). | ||
|
||
### Citation | ||
If you use this code for your research, please cite our paper [Adaptive Affinity Fields for Semantic Segmentation](https://arxiv.org/abs/1803.10335). | ||
|
||
``` | ||
@article{aaf2018, | ||
title={Adaptive Affinity Fields for Semantic Segmentation}, | ||
author={Tsung-Wei Ke*, Jyh-Jing Hwang*, Ziwei Liu, and Stella X. Yu.}, | ||
journal={ECCV}, | ||
year={2018} | ||
} | ||
``` | ||
|
||
## Prerequisites | ||
|
||
1. Linux | ||
2. Python2.7 or Python3 (>=3.5) | ||
3. Cuda 8.0 and Cudnn 6 | ||
|
||
## Required Python Packages | ||
|
||
1. tensorflow 1.4 (for versions >= 1.6 might cause OOM error) | ||
2. numpy | ||
3. scipy | ||
4. tqdm | ||
5. PIL | ||
6. opencv | ||
|
||
## Data Preparation | ||
|
||
* [PASCAL VOC 2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/) | ||
* [Cityscapes](https://www.cityscapes-dataset.com/) | ||
|
||
## ImageNet Pre-Trained Models | ||
|
||
Download ResNet101.v1 from [Tensorflow-Slim](https://github.com/tensorflow/models/tree/master/research/slim). | ||
|
||
## Training | ||
|
||
* Baseline Models: | ||
``` | ||
python pyscripts/train/train.py | ||
``` | ||
|
||
* Affinity | ||
``` | ||
python pyscripts/train/train_aff.py | ||
``` | ||
|
||
* AAF | ||
``` | ||
python pyscripts/train/train_aaf.py | ||
``` | ||
|
||
## Inference | ||
|
||
* Single-Scale Input only | ||
``` | ||
python pyscripts/test/evaluate.py | ||
``` | ||
|
||
* Multi-Scale Inputs and Left-Right Flipping (opencv is required) | ||
``` | ||
python pyscripts/test/evaluate_msc.py | ||
``` | ||
|
||
## Benchmarking | ||
|
||
* mIoU | ||
``` | ||
python pyscripts/utils/benchmark_by_mIoU.py | ||
``` | ||
|
||
See our [bash script examples](/bashscripts/) for the corresponding input arguments. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
#!/bin/bash | ||
# Training Parameters | ||
BATCH_SIZE=8 | ||
TRAIN_INPUT_SIZE=336,336 | ||
WEIGHT_DECAY=5e-4 | ||
ITER_SIZE=1 | ||
NUM_STEPS=30000 | ||
NUM_CLASSES=21 | ||
# Testing Parameters | ||
TEST_INPUT_SIZE=480,480 | ||
TEST_STRIDES=320,320 | ||
TEST_SPLIT=val | ||
# saved model path | ||
SNAPSHOT_DIR=snapshots/voc12/pspnet/p336_bs8_lr1e-3_it30k | ||
# Procedure pipeline | ||
IS_TRAIN_1=1 | ||
IS_TEST_1=1 | ||
IS_BENCHMARK_1=1 | ||
IS_TRAIN_2=1 | ||
IS_TEST_2=1 | ||
IS_BENCHMARK_2=1 | ||
|
||
export PYTHONPATH=`pwd`:$PYTHONPATH | ||
DATAROOT=/path/to/data | ||
|
||
|
||
# Stage1 Training | ||
if [ ${IS_TRAIN_1} -eq 1 ]; then | ||
python3 pyscripts/train/train.py\ | ||
--snapshot-dir ${SNAPSHOT_DIR}/stage1\ | ||
--restore-from snapshots/imagenet/trained/resnet_v1_101.ckpt\ | ||
--data-list dataset/voc12/train+.txt\ | ||
--data-dir ${DATAROOT}/VOCdevkit/\ | ||
--batch-size ${BATCH_SIZE}\ | ||
--save-pred-every 10000\ | ||
--update-tb-every 50\ | ||
--input-size ${TRAIN_INPUT_SIZE}\ | ||
--learning-rate 1e-3\ | ||
--weight-decay ${WEIGHT_DECAY}\ | ||
--iter-size ${ITER_SIZE}\ | ||
--num-classes ${NUM_CLASSES}\ | ||
--num-steps $(($NUM_STEPS+1))\ | ||
--random-mirror\ | ||
--random-scale\ | ||
--random-crop\ | ||
--not-restore-classifier\ | ||
--is-training | ||
fi | ||
|
||
# Stage1 Testing | ||
if [ ${IS_TEST_1} -eq 1 ]; then | ||
python3 pyscripts/test/evaluate.py\ | ||
--data-dir ${DATAROOT}/VOCdevkit/\ | ||
--data-list dataset/voc12/${TEST_SPLIT}.txt\ | ||
--input-size ${TEST_INPUT_SIZE}\ | ||
--strides ${TEST_STRIDES}\ | ||
--restore-from ${SNAPSHOT_DIR}/stage1/model.ckpt-${NUM_STEPS}\ | ||
--colormap misc/colormapvoc.mat\ | ||
--num-classes ${NUM_CLASSES}\ | ||
--ignore-label 255\ | ||
--save-dir ${SNAPSHOT_DIR}/stage1/results/${TEST_SPLIT} | ||
fi | ||
|
||
if [ ${IS_BENCHMARK_1} -eq 1 ]; then | ||
python3 pyscripts/utils/benchmark_by_mIoU.py\ | ||
--pred-dir ${SNAPSHOT_DIR}/stage1/results/${TEST_SPLIT}/gray/\ | ||
--gt-dir ${DATAROOT}/VOCdevkit/VOC2012/segcls/\ | ||
--num-classes ${NUM_CLASSES} | ||
fi | ||
|
||
# Stage2 Training | ||
if [ ${IS_TRAIN_2} -eq 1 ]; then | ||
python3 pyscripts/train/train.py\ | ||
--snapshot-dir ${SNAPSHOT_DIR}/stage2\ | ||
--restore-from ${SNAPSHOT_DIR}/stage1/model.ckpt-30000\ | ||
--data-list dataset/voc12/train.txt\ | ||
--data-dir ${DATAROOT}/VOCdevkit/\ | ||
--batch-size ${BATCH_SIZE}\ | ||
--save-pred-every 10000\ | ||
--update-tb-every 50\ | ||
--input-size ${TRAIN_INPUT_SIZE}\ | ||
--learning-rate 1e-4\ | ||
--weight-decay ${WEIGHT_DECAY}\ | ||
--iter-size ${ITER_SIZE}\ | ||
--num-classes ${NUM_CLASSES}\ | ||
--num-steps $(($NUM_STEPS+1))\ | ||
--random-mirror\ | ||
--random-scale\ | ||
--random-crop\ | ||
--is-training | ||
fi | ||
|
||
# Stage2 Testing | ||
if [ ${IS_TEST_2} -eq 1 ]; then | ||
python3 pyscripts/test/evaluate_msc.py\ | ||
--data-dir ${DATAROOT}/VOCdevkit/\ | ||
--data-list dataset/voc12/${TEST_SPLIT}.txt\ | ||
--input-size ${TEST_INPUT_SIZE}\ | ||
--strides ${TEST_STRIDES}\ | ||
--restore-from ${SNAPSHOT_DIR}/stage2/model.ckpt-${NUM_STEPS}\ | ||
--colormap misc/colormapvoc.mat\ | ||
--num-classes ${NUM_CLASSES}\ | ||
--ignore-label 255\ | ||
--flip-aug\ | ||
--scale-aug\ | ||
--save-dir ${SNAPSHOT_DIR}/stage2/results/${TEST_SPLIT} | ||
fi | ||
|
||
if [ ${IS_BENCHMARK_2} -eq 1 ]; then | ||
python3 pyscripts/utils/benchmark_by_mIoU.py\ | ||
--pred-dir ${SNAPSHOT_DIR}/stage2/results/${TEST_SPLIT}/gray/\ | ||
--gt-dir ${DATAROOT}/VOCdevkit/VOC2012/segcls/\ | ||
--num-classes ${NUM_CLASSES} | ||
fi |
Oops, something went wrong.