Skip to content

Commit

Permalink
Merge pull request #155 from twosixlabs/149-implement-robust-dpatch-a…
Browse files Browse the repository at this point in the history
…ttack

149 implement robust dpatch attack
  • Loading branch information
treubig26 authored Jun 11, 2024
2 parents 20e597f + 062e285 commit e2ab57f
Show file tree
Hide file tree
Showing 7 changed files with 630 additions and 22 deletions.
226 changes: 226 additions & 0 deletions examples/src/armory/examples/object_detection/datasets/visdrone.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,226 @@
"""Utilities to load the VisDrone 2019 dataset."""

import csv
import io
from pathlib import Path
from pprint import pprint
from typing import Any, Dict, Iterator, List, Tuple

import albumentations as A
import albumentations.pytorch
import datasets
import numpy as np

import armory.data
import armory.dataset


def create_dataloader(
dataset: datasets.Dataset, max_size: int, **kwargs
) -> armory.dataset.ObjectDetectionDataLoader:
"""
Create an Armory object detection dataloader for the given VisDrone2019 dataset split.
Args:
dataset: VisDrone2019 dataset split
max_size: Maximum image size to which to resize and pad image samples
**kwargs: Additional keyword arguments to pass to the dataloader constructor
Return:
Armory object detection dataloader
"""
resize = A.Compose(
[
A.LongestMaxSize(max_size=max_size),
A.PadIfNeeded(
min_height=max_size,
min_width=max_size,
border_mode=0,
value=(0, 0, 0),
),
A.ToFloat(max_value=255),
albumentations.pytorch.ToTensorV2(),
],
bbox_params=A.BboxParams(
format="coco",
label_fields=["id", "category", "occlusion", "truncation"],
),
)

def transform(sample):
tmp = dict(**sample)
tmp["image"] = []
tmp["objects"] = []
for image, objects in zip(sample["image"], sample["objects"]):
res = resize(
image=np.asarray(image),
bboxes=objects["bbox"],
id=objects["id"],
category=objects["category"],
occlusion=objects["occlusion"],
truncation=objects["truncation"],
)
tmp["image"].append(res.pop("image"))
tmp["objects"].append(res)
return tmp

dataset.set_transform(transform)

return armory.dataset.ObjectDetectionDataLoader(
dataset,
image_key="image",
dim=armory.data.ImageDimensions.CHW,
scale=armory.data.Scale(
dtype=armory.data.DataType.FLOAT,
max=1.0,
),
objects_key="objects",
boxes_key="bboxes",
format=armory.data.BBoxFormat.XYWH,
labels_key="category",
**kwargs,
)


TRAIN_URL = "https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip"
VAL_URL = "https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip"
TEST_URL = "https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip"


def load_dataset() -> datasets.DatasetDict:
"""
Load the train and validation splits of the VisDrone2019 dataset.
Return:
Dictionary containing the train and validation splits
"""
dl_manager = datasets.DownloadManager(dataset_name="VisDrone2019")
ds_features = features()
paths = dl_manager.download({"train": TRAIN_URL, "val": VAL_URL, "test": TEST_URL})
train_files = dl_manager.iter_archive(paths["train"])
val_files = dl_manager.iter_archive(paths["val"])
test_files = dl_manager.iter_archive(paths["test"])
return datasets.DatasetDict(
{
datasets.Split.TRAIN: datasets.Dataset.from_generator(
generate_samples,
gen_kwargs={"files": train_files},
features=ds_features,
),
datasets.Split.VALIDATION: datasets.Dataset.from_generator(
generate_samples,
gen_kwargs={"files": val_files},
features=ds_features,
),
datasets.Split.TEST: datasets.Dataset.from_generator(
generate_samples,
gen_kwargs={"files": test_files},
features=ds_features,
),
}
)


CATEGORIES = [
# The YOLOv5 model removed this class and shifted all others down by 1 when
# it trained on the VisDrone data
# "ignored",
"pedestrian",
"people",
"bicycle",
"car",
"van",
"truck",
"tricycle",
"awning-tricycle",
"bus",
"motor",
# The YOLOv5 model also ignored/removed this class
# "other",
]


def features() -> datasets.Features:
"""Create VisDrone2019 dataset features"""
return datasets.Features(
{
"image_id": datasets.Value("int64"),
"file_name": datasets.Value("string"),
"image": datasets.Image(),
"objects": datasets.Sequence(
{
"id": datasets.Value("int64"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"category": datasets.ClassLabel(
num_classes=len(CATEGORIES), names=CATEGORIES
),
"truncation": datasets.Value("int32"),
"occlusion": datasets.Value("int32"),
}
),
}
)


ANNOTATION_FIELDS = [
"x",
"y",
"width",
"height",
"score",
"category_id",
"truncation",
"occlusion",
]


def load_annotations(file: io.BufferedReader) -> List[Dict[str, Any]]:
"""Load annotations/objects from the given file"""
reader = csv.DictReader(
io.StringIO(file.read().decode("utf-8")), fieldnames=ANNOTATION_FIELDS
)
annotations = []
for idx, row in enumerate(reader):
score = int(row["score"])
category = int(row["category_id"])
if score != 0: # Drop annotations with score of 0 (class-0 & class-11)
category -= 1 # The model was trained with 0-indexed categories starting at pedestrian
bbox = list(map(float, [row[k] for k in ANNOTATION_FIELDS[:4]]))
if bbox[2] == 0 or bbox[3] == 0:
continue
annotations.append(
{
"id": idx,
"bbox": bbox,
"category": category,
"truncation": row["truncation"],
"occlusion": row["occlusion"],
}
)
return annotations


def generate_samples(
files: Iterator[Tuple[str, io.BufferedReader]], annotation_file_ext: str = ".txt"
) -> Iterator[Dict[str, Any]]:
"""Generate dataset samples from the given files in a VisDrone2019 archive"""
annotations = {}
images = {}
for path, file in files:
file_name = Path(path).stem
if Path(path).suffix == annotation_file_ext:
annotations[file_name] = load_annotations(file)
else:
images[file_name] = {"path": path, "bytes": file.read()}

for idx, (file_name, annotation) in enumerate(annotations.items()):
yield {
"image_id": idx,
"file_name": file_name,
"image": images[file_name],
"objects": annotation,
}


if __name__ == "__main__":
pprint(load_dataset())
Loading

0 comments on commit e2ab57f

Please sign in to comment.