Skip to content

Commit

Permalink
Merge pull request #2000 from twosixlabs/develop
Browse files Browse the repository at this point in the history
Merge develop into master for October-2023 release
  • Loading branch information
mwartell authored Oct 30, 2023
2 parents fd853f2 + 042c062 commit b60ea34
Show file tree
Hide file tree
Showing 25 changed files with 1,764 additions and 161 deletions.
26 changes: 25 additions & 1 deletion .github/workflows/3-test-docker.yml
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,14 @@ jobs:
name: ☁️ Docker Armory Image Tests
runs-on: ubuntu-latest
steps:
- name: 💿 Maximize build space
uses: easimon/maximize-build-space@master
with:
root-reserve-mb: 35000
swap-size-mb: 1024
remove-dotnet: 'true'
remove-android: 'true'

- name: 🐄 checkout armory full depth with tags for scm
uses: actions/checkout@v3
with:
Expand Down Expand Up @@ -50,6 +58,14 @@ jobs:
name: ☁️ Docker Deepspeech Image Tests
runs-on: ubuntu-latest
steps:
- name: 💿 Maximize build space
uses: easimon/maximize-build-space@master
with:
root-reserve-mb: 35000
swap-size-mb: 1024
remove-dotnet: 'true'
remove-android: 'true'

- name: 🐄 checkout armory full depth with tags for scm
uses: actions/checkout@v3
with:
Expand Down Expand Up @@ -96,6 +112,14 @@ jobs:
name: ☁️ Docker Yolo Image Tests
runs-on: ubuntu-latest
steps:
- name: 💿 Maximize build space
uses: easimon/maximize-build-space@master
with:
root-reserve-mb: 35000
swap-size-mb: 1024
remove-dotnet: 'true'
remove-android: 'true'

- name: 🐄 checkout armory full depth with tags for scm
uses: actions/checkout@v3
with:
Expand All @@ -114,4 +138,4 @@ jobs:
- name: 🚧 Build the Container
run: |
python docker/build.py --framework yolo
python docker/build.py --framework yolo
18 changes: 17 additions & 1 deletion .github/workflows/release.yml
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,14 @@ jobs:
needs: [release-wheel]
runs-on: ubuntu-latest
steps:
- name: 💿 Maximize build space
uses: easimon/maximize-build-space@master
with:
root-reserve-mb: 35000
swap-size-mb: 1024
remove-dotnet: 'true'
remove-android: 'true'

- name: 🐍 Setup Python 3.9
uses: actions/setup-python@v4
with:
Expand Down Expand Up @@ -111,6 +119,14 @@ jobs:
- image: pytorch-deepspeech
- image: yolo
steps:
- name: 💿 Maximize build space
uses: easimon/maximize-build-space@master
with:
root-reserve-mb: 35000
swap-size-mb: 1024
remove-dotnet: 'true'
remove-android: 'true'

- name: 🐍 Setup Python 3.9
uses: actions/setup-python@v4
with:
Expand Down Expand Up @@ -174,4 +190,4 @@ jobs:
# Workflow Test:
# act --detect-event -j release-wheel
# act workflow_dispatch -j release-docker --eventpath .github/workflows/tests/release-dry-run.json
# act workflow_dispatch -j release-docker --eventpath .github/workflows/tests/release-dry-run.json
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -150,7 +150,7 @@ Agency (DARPA).
[python-url]: https://pypi.org/project/armory-testbed
[license-badge]: https://img.shields.io/badge/License-MIT-yellow.svg
[license-url]: https://opensource.org/licenses/MIT
[docs-badge]: https://github.com/twosixlabs/armory/docs/assets/docs-badge.svg
[docs-url]: https://github.com/twosixlabs/armory/docs
[docs-badge]: docs/assets/docs-badge.svg
[docs-url]: https://github.com/twosixlabs/armory/tree/master/docs
[style-badge]: https://img.shields.io/badge/code%20style-black-000000.svg
[style-url]: https://github.com/ambv/black
23 changes: 4 additions & 19 deletions armory/__main__.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,11 +19,7 @@

import armory
from armory import arguments, paths
from armory.cli.tools import (
log_current_branch,
plot_mAP_by_giou_with_patch_cli,
rgb_depth_convert,
)
from armory.cli import CLI_COMMANDS
from armory.configuration import load_global_config, save_config
from armory.eval import Evaluator
import armory.logs
Expand Down Expand Up @@ -632,7 +628,6 @@ def configure(command_args, prog, description):
print(resolved)
save = None
while save is None:

if os.path.isfile(default_host_paths.armory_config):
print("WARNING: this will overwrite existing configuration.")
print(" Press Ctrl-C to abort.")
Expand Down Expand Up @@ -723,16 +718,6 @@ def exec(command_args, prog, description):
sys.exit(exit_code)


UTILS_COMMANDS = {
"get-branch": (log_current_branch, "log the current git branch of armory"),
"rgb-convert": (rgb_depth_convert, "converts rgb depth images to another format"),
"plot-mAP-by-giou": (
plot_mAP_by_giou_with_patch_cli,
"Visualize the output of the metric 'object_detection_AP_per_class_by_giou_from_patch.'",
),
}


def utils_usage():
lines = [
f"{PROGRAM} <command>",
Expand All @@ -742,7 +727,7 @@ def utils_usage():
"",
"Commands:",
]
for name, (func, description) in UTILS_COMMANDS.items():
for name, (func, description) in CLI_COMMANDS.items():
lines.append(f" {name} - {description}")
lines.extend(
[
Expand All @@ -759,12 +744,12 @@ def utils(command_args, prog, description):
parser = argparse.ArgumentParser(prog=prog, usage=utils_usage())
parser.add_argument(
"command",
choices=UTILS_COMMANDS.keys(),
choices=CLI_COMMANDS.keys(),
help="utility command to run",
)
args = parser.parse_args(sys.argv[2:3])

func, description = UTILS_COMMANDS[args.command]
func, description = CLI_COMMANDS[args.command]
prog = f"{PROGRAM} {args.command}"
return func(sys.argv[3:], prog, description)

Expand Down
94 changes: 40 additions & 54 deletions armory/art_experimental/attacks/carla_obj_det_adversarial_patch.py
Original file line number Diff line number Diff line change
@@ -1,40 +1,37 @@
import os
from typing import Optional

from art.attacks.evasion.adversarial_patch.adversarial_patch_pytorch import (
AdversarialPatchPyTorch,
)
import cv2
import numpy as np
import requests
import torch

from armory import paths
from armory.art_experimental.attacks.carla_obj_det_utils import (
PatchMask,
fetch_image_from_file_or_url,
linear_depth_to_rgb,
linear_to_log,
log_to_linear,
rgb_depth_to_linear,
)
from armory.logs import log

VALID_IMAGE_TYPES = ["image/png", "image/jpeg", "image/jpg"]


class CARLAAdversarialPatchPyTorch(AdversarialPatchPyTorch):
"""
Apply patch attack to RGB channels and (optionally) masked PGD attack to depth channels.
"""

def __init__(self, estimator, **kwargs):

# Maximum depth perturbation from a flat patch
self.depth_delta_meters = kwargs.pop("depth_delta_meters", 3)
self.learning_rate_depth = kwargs.pop("learning_rate_depth", 0.0001)
self.depth_perturbation = None
self.min_depth = None
self.max_depth = None
self.patch_base_image = kwargs.pop("patch_base_image", None)
self.patch_mask = PatchMask.from_kwargs(kwargs.pop("patch_mask", None))

# HSV bounds are user-defined to limit perturbation regions
self.hsv_lower_bound = np.array(
Expand All @@ -51,60 +48,27 @@ def create_initial_image(self, size, hsv_lower_bound, hsv_upper_bound):
Create initial patch based on a user-defined image and
create perturbation mask based on HSV bounds
"""
module_path = globals()["__file__"]
module_folder = os.path.dirname(module_path)
# user-defined image is assumed to reside in the same location as the attack module
patch_base_image_path = os.path.abspath(
os.path.join(module_folder, self.patch_base_image)
)
# if the image does not exist, check cwd
if not os.path.exists(patch_base_image_path):
patch_base_image_path = os.path.abspath(
os.path.join(paths.runtime_paths().cwd, self.patch_base_image)
if not isinstance(self.patch_base_image, str):
raise ValueError(
"patch_base_image must be a string path to an image or a url to an image"
)
# image not in cwd or module, check if it is a url to an image
if not os.path.exists(patch_base_image_path):
# Send a HEAD request
response = requests.head(self.patch_base_image, allow_redirects=True)

# Check the status code
if response.status_code != 200:
raise FileNotFoundError(
f"Cannot find patch base image at {self.patch_base_image}. "
f"Make sure it is in your cwd or {module_folder} or provide a valid url."
)
# If the status code is 200, check the content type
content_type = response.headers.get("content-type")
if content_type not in VALID_IMAGE_TYPES:
raise ValueError(
f"Returned content at {self.patch_base_image} is not a valid image type. "
f"Expected types are {VALID_IMAGE_TYPES}, but received {content_type}"
)

# If content type is valid, download the image
response = requests.get(self.patch_base_image, allow_redirects=True)
im = cv2.imdecode(
np.frombuffer(response.content, np.uint8), cv2.IMREAD_COLOR
)
else:
im = cv2.imread(patch_base_image_path)

im = fetch_image_from_file_or_url(self.patch_base_image)
im = cv2.resize(im, size)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)

hsv = cv2.cvtColor(im, cv2.COLOR_RGB2HSV)
# find the colors within the boundaries
mask = cv2.inRange(hsv, hsv_lower_bound, hsv_upper_bound)
mask = np.expand_dims(mask, 2)
color_mask = cv2.inRange(hsv, hsv_lower_bound, hsv_upper_bound)
color_mask = np.expand_dims(color_mask, 2)
# cv2.imwrite(
# "mask.png", mask
# "color_mask.png", color_mask
# ) # visualize perturbable regions. Comment out if not needed.

patch_base = np.transpose(im, (2, 0, 1))
patch_base = patch_base / 255.0
mask = np.transpose(mask, (2, 0, 1))
mask = mask / 255.0
return patch_base, mask
color_mask = np.transpose(color_mask, (2, 0, 1))
color_mask = color_mask / 255.0
return patch_base, color_mask

def _train_step(
self,
Expand All @@ -125,7 +89,9 @@ def _train_step(

if self._optimizer_string == "pgd":
patch_grads = self._patch.grad
patch_gradients = patch_grads.sign() * self.learning_rate * self.patch_mask
patch_gradients = (
patch_grads.sign() * self.learning_rate * self.patch_color_mask
)

if images.shape[-1] == 6:
depth_grads = self.depth_perturbation.grad
Expand Down Expand Up @@ -323,7 +289,6 @@ def _random_overlay(
padded_patch_list = []

for i_sample in range(nb_samples):

image_mask_i = image_mask[i_sample]

height = padded_patch.shape[self.i_h + 1]
Expand Down Expand Up @@ -473,6 +438,15 @@ def generate(self, x, y=None, y_patch_metadata=None):
# Use this mask to embed patch into the background in the event of occlusion
self.binarized_patch_mask = y_patch_metadata[i]["mask"]

# Add patch mask to the image mask
if self.patch_mask is not None:
orig_patch_mask = self.binarized_patch_mask.copy()
projected_mask = self.patch_mask.project(
self.binarized_patch_mask.shape, gs_coords, as_bool=True
)
# binarized_patch_mask already handled in loss function
self.binarized_patch_mask *= projected_mask

# Eval7 contains a mixture of patch locations.
# Patches that lie flat on the sidewalk or street are constrained to 0.03m depth perturbation, and they are best used to create disappearance errors.
# Patches located elsewhere (i.e., that do not impede pedestrian/vehicle motion) are constrained to 3m depth perturbation, and they are best used to create hallucinations.
Expand All @@ -490,19 +464,21 @@ def generate(self, x, y=None, y_patch_metadata=None):

# self._patch needs to be re-initialized with the correct shape
if self.patch_base_image is not None:
patch_init, patch_mask = self.create_initial_image(
patch_init, patch_color_mask = self.create_initial_image(
(patch_width, patch_height),
self.hsv_lower_bound,
self.hsv_upper_bound,
)
else:
patch_init = np.random.randint(0, 255, size=self.patch_shape) / 255
patch_mask = np.ones_like(patch_init)
patch_color_mask = np.ones_like(patch_init)

self._patch = torch.tensor(
patch_init, requires_grad=True, device=self.estimator.device
)
self.patch_mask = torch.Tensor(patch_mask).to(self.estimator.device)
self.patch_color_mask = torch.Tensor(patch_color_mask).to(
self.estimator.device
)

# initialize depth variables
if x.shape[-1] == 6:
Expand Down Expand Up @@ -575,6 +551,16 @@ def generate(self, x, y=None, y_patch_metadata=None):
np.all(self.binarized_patch_mask == 0, axis=-1)
]

# Embed patch mask fill into masked region
if self.patch_mask is not None:
patched_image = self.patch_mask.fill_masked_region(
patched_image=patched_image,
projected_mask=projected_mask,
gs_coords=gs_coords,
patch_init=patch_init,
orig_patch_mask=orig_patch_mask,
)

patched_image = np.clip(
patched_image,
self.estimator.clip_values[0],
Expand Down
Loading

0 comments on commit b60ea34

Please sign in to comment.