Releases: ufoym/deepo
Deepo v2.0.0
Deepo2 is now a series of Docker images that
- allows you to quickly set up your deep learning research environment
- supports almost all commonly used deep learning frameworks: theano, tensorflow, sonnet, pytorch, keras, lasagne, mxnet, cntk, chainer, caffe, torch
and their Dockerfile generator that
- allows you to customize your own environment with Lego-like modules
- automatically resolves the dependencies for you
Table of contents
Quick Start
Installation
Step 1. Install Docker and nvidia-docker.
Step 2. Obtain the all-in-one image from Docker Hub
docker pull ufoym/deepo
Usage
Now you can try this command:
nvidia-docker run --rm ufoym/deepo nvidia-smi
This should work and enables Deepo to use the GPU from inside a docker container.
If this does not work, search the issues section on the nvidia-docker GitHub -- many solutions are already documented. To get an interactive shell to a container that will not be automatically deleted after you exit do
nvidia-docker run -it ufoym/deepo bash
If you want to share your data and configurations between the host (your machine or VM) and the container in which you are using Deepo, use the -v option, e.g.
nvidia-docker run -it -v /host/data:/data -v /host/config:/config ufoym/deepo bash
This will make /host/data
from the host visible as /data
in the container, and /host/config
as /config
. Such isolation reduces the chances of your containerized experiments overwriting or using wrong data.
Please note that some frameworks (e.g. PyTorch) use shared memory to share data between processes, so if multiprocessing is used the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host
or --shm-size
command line options to nvidia-docker run
.
nvidia-docker run -it --ipc=host ufoym/deepo bash
You are now ready to begin your journey.
$ python
>>> import tensorflow
>>> import sonnet
>>> import torch
>>> import keras
>>> import mxnet
>>> import cntk
>>> import chainer
>>> import theano
>>> import lasagne
>>> import caffe
$ caffe --version
caffe version 1.0.0
$ th
│ ______ __ | Torch7
│ /_ __/__ ________/ / | Scientific computing for Lua.
│ / / / _ \/ __/ __/ _ \ | Type ? for help
│ /_/ \___/_/ \__/_//_/ | https://github.com/torch
│ | http://torch.ch
│
│th>
Customization
Note that docker pull ufoym/deepo
mentioned in Quick Start will give you a standard image containing all available deep learning frameworks. You can customize your own environment as well.
I hate all-in-one solution
If you prefer a specific framework rather than an all-in-one image, just append a tag with the name of the framework.
Take tensorflow for example:
docker pull ufoym/deepo:tensorflow
Other python versions
Note that all python-related images use Python 3.6
by default. If you are unhappy with Python 3.6
, you can also specify other python versions:
docker pull ufoym/deepo:py27
docker pull ufoym/deepo:tensorflow-py27
Currently, we support Python 2.7
and Python 3.6
.
See https://hub.docker.com/r/ufoym/deepo/tags/ for a complete list of all available tags. These pre-built images are all built from docker/Dockerfile.*
and circle.yml
. See How to generate docker/Dockerfile.*
and circle.yml
if you are interested in how these files are generated.
Build your own customized image with Lego-like modules
Step 1. prepare generator
git clone https://github.com/ufoym/deepo.git
cd deepo/generator
pip install -r requirements.txt
Step 2. generate your customized Dockerfile
For example, if you like pytorch
and lasagne
, then
python generate.py Dockerfile pytorch lasagne
This should generate a Dockerfile that contains everything for building pytorch
and lasagne
. Note that the generator can handle automatic dependency processing and topologically sort the lists. So you don't need to worry about missing dependencies and the list order.
You can also specify the version of Python:
python generate.py Dockerfile pytorch lasagne python==3.6
Step 3. build your Dockerfile
docker build -t my/deepo .
This may take several minutes as it compiles a few libraries from scratch.
Comparison to alternatives
. | modern-deep-learning | dl-docker | jupyter-deeplearning | Deepo |
---|---|---|---|---|
ubuntu | 16.04 | 14.04 | 14.04 | 16.04 |
cuda | ❌ | 8.0 | 6.5-8.0 | 8.0 |
cudnn | ❌ | v5 | v2-5 | v6 |
theano | ❌ | ✔️ | ✔️ | ✔️ |
tensorflow | ✔️ | ✔️ | ✔️ | ✔️ |
sonnet | ❌ | ❌ | ❌ | ✔️ |
pytorch | ❌ | ❌ | ❌ | ✔️ |
keras | ✔️ | ✔️ | ✔️ | ✔️ |
lasagne | ❌ | ✔️ | ✔️ | ✔️ |
mxnet | ❌ | ❌ | ❌ | ✔️ |
cntk | ❌ | ❌ | ❌ | ✔️ |
chainer | ❌ | ❌ | ❌ | ✔️ |
caffe | ✔️ | ✔️ | ✔️ | ✔️ |
torch | ❌ | ✔️ | ✔️ | ✔️ |
Deepo v1.0.0
Deepo is a Docker image with a full reproducible deep learning research environment. It contains most popular deep learning frameworks: theano, tensorflow, sonnet, pytorch, keras,
lasagne, mxnet, cntk, chainer, caffe, torch.
Quick Start
Installation
Step 1. Install Docker and nvidia-docker.
Step 2. Obtain the Deepo image
You can either directly download the image from Docker Hub, or build the image yourself.
Option 1: Get the image from Docker Hub (recommended)
docker pull ufoym/deepo
Option 2: Build the Docker image locally
git clone https://github.com/ufoym/deepo.git
cd deepo && docker build -t ufoym/deepo .
Note that this may take several hours as it compiles a few libraries from scratch.
Usage
Now you can try this command:
nvidia-docker run --rm ufoym/deepo nvidia-smi
This should work and enables Deepo to use the GPU from inside a docker container.
If this does not work, search the issues section on the nvidia-docker GitHub -- many solutions are already documented. To get an interactive shell to a container that will not be automatically deleted after you exit do
nvidia-docker run -it ufoym/deepo bash
If you want to share your data and configurations between the host (your machine or VM) and the container in which you are using Deepo, use the -v option, e.g.
nvidia-docker run -it -v /host/data:/data -v /host/config:/config ufoym/deepo bash
This will make /host/data
from the host visible as /data
in the container, and /host/config
as /config
. Such isolation reduces the chances of your containerized experiments overwriting or using wrong data.
You are now ready to begin your journey.
tensorflow
$ python
>>> import tensorflow
>>> print(tensorflow.__name__, tensorflow.__version__)
tensorflow 1.3.0
sonnet
$ python
>>> import sonnet
>>> print(sonnet.__name__, sonnet.__path__)
sonnet ['/usr/local/lib/python3.5/dist-packages/sonnet']
pytorch
$ python
>>> import torch
>>> print(torch.__name__, torch.__version__)
torch 0.2.0_3
keras
$ python
>>> import keras
>>> print(keras.__name__, keras.__version__)
keras 2.0.8
mxnet
$ python
>>> import mxnet
>>> print(mxnet.__name__, mxnet.__version__)
mxnet 0.11.0
cntk
$ python
>>> import cntk
>>> print(cntk.__name__, cntk.__version__)
cntk 2.2
chainer
$ python
>>> import chainer
>>> print(chainer.__name__, chainer.__version__)
chainer 3.0.0
theano
$ python
>>> import theano
>>> print(theano.__name__, theano.__version__)
theano 0.10.0beta4+14.gb6e3768
lasagne
$ python
>>> import lasagne
>>> print(lasagne.__name__, lasagne.__version__)
lasagne 0.2.dev1
caffe
$ python
>>> import caffe
>>> print(caffe.__name__, caffe.__version__)
caffe 1.0.0
$ caffe --version
caffe version 1.0.0
torch
$ th
│ ______ __ | Torch7
│ /_ __/__ ________/ / | Scientific computing for Lua.
│ / / / _ \/ __/ __/ _ \ | Type ? for help
│ /_/ \___/_/ \__/_//_/ | https://github.com/torch
│ | http://torch.ch
│
│th>
Comparison to alternatives
. | modern-deep-learning | dl-docker | jupyter-deeplearning | Deepo |
---|---|---|---|---|
ubuntu | 16.04 | 14.04 | 14.04 | 16.04 |
cuda | ❌ | 8.0 | 6.5-8.0 | 8.0 |
cudnn | ❌ | v5 | v2-5 | v6 |
theano | ❌ | ✔️ | ✔️ | ✔️ |
tensorflow | ✔️ | ✔️ | ✔️ | ✔️ |
sonnet | ❌ | ❌ | ❌ | ✔️ |
pytorch | ❌ | ❌ | ❌ | ✔️ |
keras | ✔️ | ✔️ | ✔️ | ✔️ |
lasagne | ❌ | ✔️ | ✔️ | ✔️ |
mxnet | ❌ | ❌ | ❌ | ✔️ |
cntk | ❌ | ❌ | ❌ | ✔️ |
chainer | ❌ | ❌ | ❌ | ✔️ |
caffe | ✔️ | ✔️ | ✔️ | ✔️ |
torch | ❌ | ✔️ | ✔️ | ✔️ |