Transform an ill-conditioned quadratic matrix into a positive semi-definite matrix.
The scipy-psdm
git repo is available as PyPi package
pip install scipy-psdm
Lurie-Goldberg Algorithm to transform an ill-conditioned quadratic matrix into a positive semi-definite matrix.
import scipy_psdm as psdm
import numpy as np
# A matrix with subjectively set correlations
mat = [[ 1. , -0.948, 0.099, -0.129],
[-0.948, 1. , -0.591, 0.239],
[ 0.099, -0.591, 1. , 0.058],
[-0.129, 0.239, 0.058, 1. ]]
mat = np.array(mat)
# Convert to a positive semi-definite matrix
rho = psdm.approximate_correlation_matrix(mat)
print(rho.round(3))
Generate correlated random numbers
import scipy_psdm as psdm
X, rho = psdm.randcorr(n_obs=100, n_vars=5, random_state=42)
# compare
import numpy as np
print(rho.round(3))
print(np.corrcoef(X, rowvar=False).round(3))
Check the examples folder for notebooks.
python3 -m venv .venv
source .venv/bin/activate
pip3 install -r requirements.txt
pip3 install -r requirements-dev.txt
pip3 install -r requirements-demo.txt
(If your git repo is stored in a folder with whitespaces, then don't use the subfolder .venv
. Use an absolute path without whitespaces.)
- Start virtual env:
source .venv/bin/activate
- Jupyter for the examples:
jupyter lab
- Check syntax:
flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')
- Run Unit Tests:
pytest -v
Publish
pandoc README.md --from markdown --to rst -s -o README.rst
python setup.py sdist
twine upload -r pypi dist/*
find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv
Please open an issue for support.
Please contribute using Github Flow. Create a branch, add commits, and open a pull request.