Skip to content

Commit

Permalink
Add a proof
Browse files Browse the repository at this point in the history
  • Loading branch information
urkud committed Dec 16, 2024
1 parent 2382494 commit e83bd79
Showing 1 changed file with 24 additions and 3 deletions.
27 changes: 24 additions & 3 deletions blueprint/src/content.tex
Original file line number Diff line number Diff line change
Expand Up @@ -281,16 +281,37 @@ \section{Functions whose zeros include a given set}
Let \(E\) be a finite dimensional real normed space.
Let \(F\) be a real normed space.
Consider a function \(f\colon E\to F\), points \(a, b \in E\),
and numbers \(C\ge 0\), \(\delta\ge 0\), \(\alpha\ge 0\) such that
and numbers \(C\ge 0\), \(\delta\ge 0\), \(r \ge 0\) such that
\begin{itemize}
\item \(f\) is differentiable on \([a, b]\);
\item \(\|D_{b - a}f(a + t(b - a))\| \le Ct^{\alpha}{\|b - a\|}^{1+\alpha}\);
\item \(\|D_{b - a}f(a + t(b - a))\| \le Ct^{r}{\|b - a\|}^{1+r}\);
\item the set of \(t\) such that \(D_{b - a}f(a + t(b - a)) = 0\)
has measure at least \(1 - \delta\).
\end{itemize}
Then \(\|f(b) - f(a)\| \le C\delta{\|b - a\|}^{1+\alpha}\).
Then \(\|f(b) - f(a)\| \le C\delta{\|b - a\|}^{1+r}\).
\end{lemma}

\begin{proof}
Let \(s\) be the set of \(t \in [0, 1]\) such that \(D_{b - a}f(a + t(b - a)) \ne 0\).
We have
\begin{align*}
\|f(b) - f(a)\| &= \left|\int_{0}^{1} D_{b - a}f(a + t(b - a))\,dt\right| \\
&= \left|\int_{t\in s} D_{b - a}f(a + t(b - a))\,dt\right| \\
&\le \int_{t \in s} Ct^{r}{\|b - a\|}^{1+r}\,dt \\
&= C{\|b - a\|}^{1+r} \int_{t \in s}t^{r}\,dt \\
&\le C{\|b - a\|}^{1+r} \lambda(s) \\
&\le C\delta {\|b - a\|}^{1+r}
\end{align*}
\end{proof}

\begin{remark}
The constant can be improved, but probably we don't need this.
In order to do this, we need to show that
\[
\int_{t \in s}t^{r}\,dt \le \int_{1 - \delta}^{1} t^{r}\,dt = \frac{1 - {(1 - \delta)}^{r + 1}}{r + 1}.
\]
\end{remark}

\begin{lemma}%
\label{lem:cdh-at-sub-affine-isBigO}
\uses{def:cdh-at}
Expand Down

0 comments on commit e83bd79

Please sign in to comment.