See: notebook.ipynb
-
Used XGBosst for classification and keras for building an AutoEncoder
-
Link to the dataset: https://drive.google.com/file/d/1Nl-RU5HggCSWWqINN4gbxHAVzER6T2Po/view?usp=sharing
- with original features (dimensions=28), ROC AUC Score = 0.8430741138771947
- with low dimensional features (dimensions=14), ROC AUC Score = 0.736416256396276
- Pipeline: original features -> Robust scaler -> low dimensional features -> DMatrix -> XGBoost
- notebook.ipynb - contains full code
- scaler - pickle file, SkLearn Robust Scaler
- saved_encoder - Tensorflow saved model, encoder used to transform features to low dimensional space
- clf_red - pickle file, XGBoost classification model, accept low dimensional features as input
- clf - pickle file, XGBoost classification model, accept original features as input
- saved_model - Tensorflow saved model, Autoencoder, used to train encoder
Load pickle file using python pickle
module
Load TensorFlow model using, tensorflow.keras.models.load_model
function