Skip to content

Commit

Permalink
chore(docs/multiplier-points.md): Workaround GitHub Markdown bug
Browse files Browse the repository at this point in the history
  • Loading branch information
3esmit authored and 0x-r4bbit committed Dec 23, 2024
1 parent ebfa2a7 commit 52dad3d
Showing 1 changed file with 19 additions and 19 deletions.
38 changes: 19 additions & 19 deletions docs/multiplier-points.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ This document explains:
The formula for Initial MP is derived as follows:

$$
\text{MP}_\text{Initial} = \text{Stake} \times \left( 1 + \frac{\text{APY} \times T_\text{lock}}{100 \times T_\text{year}} \right)
\text{MP}_ \text{Initial} = \text{Stake} \times \left( 1 + \frac{\text{APY} \times T_ \text{lock}}{100 \times T_ \text{year}} \right)
$$

Where:
Expand All @@ -43,7 +43,7 @@ This formula calculates the MP issued immediately when tokens are staked with a
Accrued MP is calculated for time elapsed as:

$$
\text{MP}_\text{Accrued} = \text{Stake} \times \frac{\text{APY} \times T_\text{elapsed}}{100 \times T_\text{year}}
\text{MP}_ \text{Accrued} = \text{Stake} \times \frac{\text{APY} \times T_ \text{elapsed}}{100 \times T_ \text{year}}
$$

Where:
Expand All @@ -57,7 +57,7 @@ This formula adds MP as a function of time, rewarding users who keep their stake
Total MP combines both Initial MP and Accrued MP:

$$
\text{MP}_\text{Total} = \text{MP}_\text{Initial} + \text{MP}_\text{Accrued}
\text{MP}_ \text{Total} = \text{MP}_ \text{Initial} + \text{MP}_ \text{Accrued}
$$

This total is used to calculate the user’s share of rewards.
Expand All @@ -67,7 +67,7 @@ This total is used to calculate the user’s share of rewards.
The rewards distributed in the system are proportional to each user’s MP. The formula for reward share is:

$$
\text{Reward}_\text{user} = \text{Rewards}_\text{Total} \times \frac{\text{MP}_\text{user}}{\text{MP}_\text{total}}
\text{Reward}_ \text{user} = \text{Rewards}_ \text{Total} \times \frac{\text{MP}_ \text{user}}{\text{MP}_ \text{total}}
$$

This ensures rewards are allocated based on the user’s contribution to the total MP.
Expand All @@ -87,29 +87,29 @@ Let’s consider three participants: Alice, Bob, and Charlie. The total reward p
Using the formula:

$$
\text{MP}_\text{Initial} = 100 \times \left( 1 + \frac{100 \times 30}{100 \times 365} \right)
\text{MP}_ \text{Initial} = 100 \times \left( 1 + \frac{100 \times 30}{100 \times 365} \right)
$$

$$
\text{MP}_\text{Initial} = 100 \times \left( 1 + 0.082 \right) = 108.2
\text{MP}_ \text{Initial} = 100 \times \left( 1 + 0.082 \right) = 108.2
$$

#### Accrued MP

$$
\text{MP}_\text{Accrued} = 100 \times \frac{100 \times 15}{100 \times 365} = 4.1
\text{MP}_ \text{Accrued} = 100 \times \frac{100 \times 15}{100 \times 365} = 4.1
$$

#### Total MP

$$
\text{MP}_\text{Total} = 108.2 + 4.1 = 112.3
\text{MP}_ \text{Total} = 108.2 + 4.1 = 112.3
$$

#### Reward Share

$$
\text{Reward}_\text{Alice} = 10,000 \times \frac{112.3}{1,146.7} \approx 978.9
\text{Reward}_ \text{Alice} = 10,000 \times \frac{112.3}{1,146.7} \approx 978.9
$$

### Example 2: Bob
Expand All @@ -121,29 +121,29 @@ $$
#### Initial MP

$$
\text{MP}_\text{Initial} = 500 \times \left( 1 + \frac{100 \times 90}{100 \times 365} \right)
\text{MP}_ \text{Initial} = 500 \times \left( 1 + \frac{100 \times 90}{100 \times 365} \right)
$$

$$
\text{MP}_\text{Initial} = 500 \times \left( 1 + 0.247 \right) = 623.5
\text{MP}_ \text{Initial} = 500 \times \left( 1 + 0.247 \right) = 623.5
$$

#### Accrued MP

$$
\text{MP}_\text{Accrued} = 500 \times \frac{100 \times 45}{100 \times 365} = 61.6
\text{MP}_ \text{Accrued} = 500 \times \frac{100 \times 45}{100 \times 365} = 61.6
$$

#### Total MP

$$
\text{MP}_\text{Total} = 623.5 + 61.6 = 685.1
\text{MP}_ \text{Total} = 623.5 + 61.6 = 685.1
$$

#### Reward Share

$$
\text{Reward}_\text{Bob} = 10,000 \times \frac{685.1}{1,146.7} \approx 5,975.2
\text{Reward}_ \text{Bob} = 10,000 \times \frac{685.1}{1,146.7} \approx 5,975.2
$$

### Example 3: Charlie
Expand All @@ -155,33 +155,33 @@ $$
#### Initial MP

$$
\text{MP}_\text{Initial} = 300 \times \left( 1 + \frac{100 \times 0}{100 \times 365} \right) = 300
\text{MP}_ \text{Initial} = 300 \times \left( 1 + \frac{100 \times 0}{100 \times 365} \right) = 300
$$

#### Accrued MP

$$
\text{MP}_\text{Accrued} = 300 \times \frac{100 \times 60}{100 \times 365} = 49.3
\text{MP}_ \text{Accrued} = 300 \times \frac{100 \times 60}{100 \times 365} = 49.3
$$

#### Total MP

$$
\text{MP}_\text{Total} = 300 + 49.3 = 349.3
\text{MP}_ \text{Total} = 300 + 49.3 = 349.3
$$

#### Reward Share

$$
\text{Reward}_\text{Charlie} = 10,000 \times \frac{349.3}{1,146.7} \approx 3,045.9
\text{Reward}_ \text{Charlie} = 10,000 \times \frac{349.3}{1,146.7} \approx 3,045.9
$$

### Total MP Calculation

The total MP for all participants is:

$$
\text{MP}_\text{Total All} = 112.3 + 685.1 + 349.3 = 1,146.7
\text{MP}_ \text{Total All} = 112.3 + 685.1 + 349.3 = 1,146.7
$$

## Summary
Expand Down

0 comments on commit 52dad3d

Please sign in to comment.