Skip to content

This is an AI Trading System.The core idea is to create a system that can think on its own and make decisions and stratergies to make trades in FnO segment in Indian stock market.

Notifications You must be signed in to change notification settings

vatsal2025/Friday

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

3 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Friday AI Trading System

Overview

The Friday AI Trading System is an algorithmic trading platform that combines machine learning and natural language processing to create an intelligent, adaptive trading system. Built with production-ready architecture, the system provides comprehensive trading capabilities from market analysis to trade execution, featuring sophisticated risk management and advanced analytics.

πŸš€ Key Features

🧠 AI-Powered Intelligence

  • Knowledge Extraction Engine: Automatically extracts trading rules and strategies from PDFs, documents, and trading literature
  • Strategy Generator: Creates dynamic trading strategies based on market conditions and historical performance
  • Sentiment Analysis Engine: Real-time analysis of news, social media, and market sentiment for trading signals
  • Natural Language Processing: Understands and processes trading-related text data for insights
  • Pattern Recognition: Advanced pattern detection in market data and price movements
  • Predictive Analytics: Forecasting models for price movements and market trends

πŸ“Š Advanced Data Pipeline

  • Indian Market Data Integration: Real-time and historical data from Yahoo Finance and GitHub repositories
  • F&O Segment Focus: Specialized data processing for Futures and Options trading in Indian markets
  • Alternative Data Processing: News, social media, economic indicators, and earnings data integration
  • Feature Engineering Pipeline: 42+ technical indicators with configurable feature sets (price, volume, momentum, volatility, trend)
  • Data Validation & Cleaning: Comprehensive data quality assurance with outlier detection and missing data handling
  • Real-time & Historical Data: Seamless integration of live market feeds and historical data analysis
  • Custom Data Sources: Extensible framework for adding proprietary data sources

πŸ€– Machine Learning Models

  • Ensemble Model Framework: Multiple ML models working together for improved predictions
  • Dynamic Model Selection: Automatically selects best-performing models based on market conditions
  • Model Training Pipeline: Automated training, validation, and deployment of ML models
  • Feature Selection & Engineering: Intelligent feature selection with recursive feature elimination
  • Model Performance Monitoring: Real-time model performance tracking and automatic retraining
  • Custom Model Integration: Support for TensorFlow, PyTorch, and scikit-learn models

πŸ’Ό Portfolio Management

  • Advanced Risk Management: Multi-layered risk controls with position sizing, stop-loss, and take-profit
  • Portfolio Optimization: Modern Portfolio Theory implementation with risk-return optimization
  • Multi-Asset Trading: Supports Indian equities, futures, and options in NSE and BSE
  • Dynamic Allocation: Adaptive asset allocation based on market conditions and volatility
  • Tax-Aware Trading: FIFO/LIFO position management with wash sale rule compliance
  • Performance Analytics: Comprehensive performance metrics including Sharpe ratio, drawdown analysis

πŸ”„ Strategy Engine

  • Strategy Factory: Pre-built strategies (momentum, mean reversion, pairs trading, arbitrage)
  • Custom Strategy Development: Framework for developing and testing proprietary strategies
  • Strategy Backtesting: Comprehensive backtesting with walk-forward analysis and Monte Carlo simulation
  • Signal Generation: Multi-timeframe signal generation with confidence scoring
  • Strategy Optimization: Genetic algorithm-based parameter optimization
  • Real-time Strategy Adaptation: Dynamic strategy parameters based on market regime detection

⚑ Execution Engine

  • Smart Order Routing: Intelligent order routing for best execution
  • Order Management System: Advanced order types (market, limit, stop, bracket, trailing stop)
  • Slippage Control: Sophisticated slippage modeling and mitigation
  • Position Management: Real-time position tracking and management
  • Trade Cost Analysis: Pre and post-trade cost analysis
  • Broker Integration: Native integration with Zerodha for Indian market access

πŸ›‘οΈ Risk Management

  • Real-time Risk Monitoring: Continuous monitoring of portfolio risk metrics
  • Value at Risk (VaR): Monte Carlo and historical VaR calculations
  • Stress Testing: Scenario analysis and stress testing capabilities
  • Correlation Analysis: Real-time correlation monitoring and risk decomposition
  • Exposure Management: Sector, geographic, and factor exposure controls
  • Circuit Breakers: Automatic trading halts based on predefined risk thresholds

πŸ—οΈ Technical Infrastructure

  • Microservices Architecture: Scalable, containerized services with Docker support
  • Event-Driven Design: Asynchronous event processing for high-performance trading
  • Database Integration: MongoDB for market data, Redis for caching, SQLite for configuration
  • API Server: Production-ready FastAPI server with WebSocket support for real-time data
  • Monitoring & Logging: Comprehensive system monitoring with structured logging
  • Security: OAuth2 authentication, API rate limiting, and data encryption

System Architecture

The Friday AI Trading System follows a sophisticated, production-ready architecture designed for scalability, reliability, and performance. The system is built using modern software engineering principles with clear separation of concerns and robust integration patterns.

πŸ›οΈ Architectural Overview

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    Friday AI Trading System                     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                        API Layer                                β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”‚
β”‚  β”‚   FastAPI       β”‚ β”‚   WebSocket     β”‚ β”‚      CLI        β”‚    β”‚
β”‚  β”‚   Server        β”‚ β”‚   Real-time     β”‚ β”‚   Interface     β”‚    β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                    Application Layer                            β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”‚
β”‚  β”‚   Trading       β”‚ β”‚   Portfolio     β”‚ β”‚   Analytics     β”‚    β”‚
β”‚  β”‚   Orchestrator  β”‚ β”‚   Manager       β”‚ β”‚   Engine        β”‚    β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                      Strategy Layer                             β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”‚
β”‚  β”‚   Strategy      β”‚ β”‚   Signal        β”‚ β”‚   Risk          β”‚    β”‚
β”‚  β”‚   Engine        β”‚ β”‚   Generator     β”‚ β”‚   Manager       β”‚    β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                       Model Layer                               β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”‚
β”‚  β”‚   ML Models     β”‚ β”‚   Ensemble      β”‚ β”‚   Feature       β”‚    β”‚
β”‚  β”‚   & Training    β”‚ β”‚   Framework     β”‚ β”‚   Engineering   β”‚    β”‚
β”‚  β”‚   Pipeline      β”‚ β”‚                 β”‚ β”‚                 β”‚    β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                       Data Layer                                β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”‚
β”‚  β”‚   Market Data   β”‚ β”‚   Feature       β”‚ β”‚   Knowledge     β”‚    β”‚
β”‚  β”‚   Pipeline      β”‚ β”‚   Engineering   β”‚ β”‚   Extraction    β”‚    β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                   Infrastructure Layer                          β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”‚
β”‚  β”‚   Event System  β”‚ β”‚   Security      β”‚ β”‚   Monitoring    β”‚    β”‚
β”‚  β”‚   & Messaging   β”‚ β”‚   & Auth        β”‚ β”‚   & Logging     β”‚    β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                     Storage Layer                               β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”‚
β”‚  β”‚   MongoDB       β”‚ β”‚     Redis       β”‚ β”‚    File         β”‚    β”‚
β”‚  β”‚   Market Data   β”‚ β”‚     Cache       β”‚ β”‚    Storage      β”‚    β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ”§ Core Components

1. Data Layer

  • Indian Market Data Collection: Real-time and historical data from Yahoo Finance and GitHub repositories
  • F&O Segment Processing: Specialized processing for Futures and Options data
  • Alternative Data Processing: News, social media, earnings, economic indicators
  • Feature Engineering Pipeline: 42+ technical indicators across 6 feature sets
  • Data Validation & Quality: Comprehensive data cleaning and validation
  • Knowledge Extraction: PDF processing and rule extraction from trading literature

2. Model Layer

  • Machine Learning Models: Ensemble of regression, classification, and deep learning models
  • Model Training Pipeline: Automated training, validation, and deployment
  • Ensemble Framework: Advanced ensemble methods for improved prediction accuracy
  • Feature Selection: Intelligent feature selection and dimensionality reduction
  • Model Performance Monitoring: Real-time tracking and automated retraining
  • Prediction Engine: High-performance prediction generation and scoring

3. Strategy Layer

  • Strategy Engine: Multiple pre-built and custom trading strategies
  • Signal Generation: Multi-timeframe signal generation with confidence scoring
  • Portfolio Optimization: Modern Portfolio Theory and risk-return optimization
  • Backtesting Framework: Comprehensive strategy testing with walk-forward analysis
  • Risk Management: Multi-layered risk controls and position management

4. Execution Layer

  • Order Management: Advanced order types and smart order routing for Indian markets
  • Zerodha Integration: Native integration with Zerodha Kite API
  • Position Tracking: Real-time position and P&L monitoring for F&O trades
  • Trade Analytics: Pre and post-trade analysis
  • Slippage Control: Sophisticated execution cost modeling

5. Infrastructure Layer

  • Event System: High-performance event-driven architecture
  • Security Framework: OAuth2 authentication and authorization
  • Monitoring & Logging: Comprehensive system monitoring and structured logging
  • Configuration Management: Centralized configuration with environment-specific settings
  • Cache Management: Redis-based caching for performance optimization

πŸ“ Directory Structure

Friday/
β”œβ”€β”€ πŸ“ data/                          # Data storage and management
β”‚   └── πŸ“ raw/                       # Raw market data files
β”œβ”€β”€ πŸ“ logs/                          # System logs and monitoring
β”œβ”€β”€ πŸ“ models/                        # Trained ML models and checkpoints
β”œβ”€β”€ πŸ“ storage/                       # Persistent storage and backups
β”œβ”€β”€ πŸ“ src/                           # Source code
β”‚   β”œβ”€β”€ πŸ“ analytics/                 # Analytics and reporting
β”‚   β”œβ”€β”€ πŸ“ application/               # Application layer (API, CLI)
β”‚   β”œβ”€β”€ πŸ“ backtesting/               # Backtesting framework
β”‚   β”œβ”€β”€ πŸ“ common/                    # Shared utilities and common code
β”‚   β”œβ”€β”€ πŸ“ data/                      # Data processing and feature engineering
β”‚   β”œβ”€β”€ πŸ“ infrastructure/            # Infrastructure components
β”‚   β”œβ”€β”€ πŸ“ integration/               # System integration (brokers, data sources)
β”‚   β”œβ”€β”€ πŸ“ orchestration/             # System orchestration and workflow
β”‚   β”œβ”€β”€ πŸ“ portfolio/                 # Portfolio management
β”‚   β”œβ”€β”€ πŸ“ risk/                      # Risk management
β”‚   β”œβ”€β”€ πŸ“ services/                  # Core services
β”œβ”€β”€ πŸ“ tests/                         # Test suite
β”‚   β”œβ”€β”€ πŸ“ application/               # Application tests
β”‚   β”œβ”€β”€ πŸ“ communication/             # Communication layer tests
β”‚   β”œβ”€β”€ πŸ“ data/                      # Data processing tests
β”‚   β”œβ”€β”€ πŸ“ infrastructure/            # Infrastructure tests
β”‚   β”œβ”€β”€ πŸ“ integration/               # Integration tests
β”‚   β”œβ”€β”€ πŸ“ orchestration/             # Orchestration tests
β”‚   β”œβ”€β”€ πŸ“ portfolio/                 # Portfolio management tests
β”‚   β”œβ”€β”€ πŸ“ processing/                # Data processing tests
β”‚   β”œβ”€β”€ πŸ“ risk/                      # Risk management tests
β”‚   β”œβ”€β”€ πŸ“ services/                  # Service layer tests
β”œβ”€β”€ πŸ“ docs/                          # Documentation
β”œβ”€β”€ πŸ“ config/                        # Configuration files
β”‚   └── πŸ“ security/                  # Security configurations
β”œβ”€β”€ οΏ½ requirements.txt               # Python dependencies
β”œβ”€β”€ οΏ½ setup.py                       # Package setup
β”œβ”€β”€ οΏ½ pyproject.toml                 # Project configuration
β”œβ”€β”€ οΏ½ unified_config.py              # Main configuration file
β”œβ”€β”€ οΏ½ run_friday.py                  # Main application entry point
β”œβ”€β”€ οΏ½ example_market_data.csv        # Sample market data
β”œβ”€β”€ οΏ½ prepare_raw_data.py            # Data preparation script
β”œβ”€β”€ οΏ½ process_all_market_data.py     # Market data processing script
β”œβ”€β”€ οΏ½ feature_engineering_pipeline_config.py  # Feature engineering config
β”œβ”€β”€ οΏ½ backup_databases.py            # Database backup utility
β”œβ”€β”€ οΏ½ check_system_status.py         # System status monitoring
β”œβ”€β”€ οΏ½ install_dependencies.py        # Dependency installation script
β”œβ”€β”€ οΏ½ setup_environment.py           # Environment setup script
β”œβ”€β”€ οΏ½ start_friday.py                # System startup script
β”œβ”€β”€ οΏ½ README_COMPREHENSIVE.md        # Comprehensive project documentation
β”œβ”€β”€ πŸ“„ CONFIGURATION_GUIDE.md         # Configuration guide
β”œβ”€β”€ πŸ“„ DEVELOPER_GUIDE.md             # Developer documentation
β”œβ”€β”€ πŸ“„ ENVIRONMENT_SETUP.md           # Environment setup guide
β”œβ”€β”€ πŸ“„ PRODUCTION_SETUP.md            # Production deployment guide
└── πŸ“„ SETUP_INSTRUCTIONS.md          # Setup instructions

πŸ”§ Prerequisites

System Requirements

  • Operating System: Windows 10/11, macOS 10.15+, or Linux (Ubuntu 18.04+)
  • Python: 3.10 or later (3.11+ recommended for optimal performance)
  • Memory: 8GB RAM minimum (16GB+ recommended for production)
  • Storage: 10GB free disk space minimum (50GB+ for historical data)
  • Network: Stable internet connection for real-time data

Required Software

Core Dependencies

  • Python 3.10+: Main programming language
  • MongoDB 4.4+: Primary database for market data and trading records
  • Redis 6.0+: High-performance caching and session storage
  • TA-Lib: Technical analysis library (requires manual installation)

Optional Dependencies

  • Docker & Docker Compose: For containerized deployment
  • Git: Version control (for development)
  • Visual Studio Code: Recommended IDE with Python extension

API Keys & Accounts

Before running the system, you'll need to set up accounts and obtain API keys:

Trading Broker

  • Zerodha Kite: Indian stock market trading (F&O segment)

Data Providers

  • Yahoo Finance: Free Indian market data (default)
  • GitHub Repositories: Additional market data sources and historical data
  • News API: Real-time news sentiment analysis for Indian markets

πŸ“¦ Installation

Method 1: Quick Start (Recommended)

  1. Clone the Repository
git clone https://github.com/yourusername/friday-ai-trading-system.git
cd friday-ai-trading-system
  1. Run Installation Script
# Windows
install_deps.bat

# Linux/macOS
chmod +x install_deps.sh
./install_deps.sh
  1. Configure Environment
# Copy example environment file
cp .env.example .env

# Edit .env with your settings
# Windows: notepad .env
# Linux/macOS: nano .env

Method 2: Manual Installation

1. Create Virtual Environment

# Create and activate virtual environment
python -m venv friday_env

# Windows
friday_env\Scripts\activate

# Linux/macOS
source friday_env/bin/activate

2. Install Dependencies

Standard Installation:

# Install core dependencies
pip install -r requirements.txt

# Install Friday AI Trading System
pip install -e .

Install TA-Lib (Technical Analysis Library):

Windows:

# Download TA-Lib wheel from:
# https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
pip install TA_Lib-0.4.25-cp310-cp310-win_amd64.whl

Linux/macOS:

# Install TA-Lib system dependency
# Ubuntu/Debian:
sudo apt-get install libta-lib-dev

# macOS:
brew install ta-lib

# Then install Python wrapper
pip install TA-Lib

3. Set Up Databases

Install and Start MongoDB:

# Ubuntu/Debian
sudo apt-get install mongodb
sudo systemctl start mongod
sudo systemctl enable mongod

# macOS
brew install mongodb-community
brew services start mongodb-community

# Windows - Download from https://www.mongodb.com/try/download/community

Install and Start Redis:

# Ubuntu/Debian
sudo apt-get install redis-server
sudo systemctl start redis
sudo systemctl enable redis

# macOS
brew install redis
brew services start redis

# Windows - Download from https://github.com/microsoftarchive/redis/releases

4. Verify Database Installation

python verify_databases.py

5. Initialize System

# Initialize databases and create schema
python src/infrastructure/database/setup_databases.py

# Create directory structure
python initialize_infrastructure.py

Method 3: Docker Installation

  1. Prerequisites
# Install Docker and Docker Compose
# Follow instructions at: https://docs.docker.com/get-docker/
  1. Run with Docker
# Clone repository
git clone https://github.com/yourusername/friday-ai-trading-system.git
cd friday-ai-trading-system

# Start all services
docker-compose up -d

# Check service status
docker-compose ps

βš™οΈ Configuration

Environment Variables

Create a .env file in the project root with the following configuration:

# Trading Configuration
TRADING_MODE=simulation  # simulation, paper, live
DEFAULT_CASH=100000
RISK_FREE_RATE=0.02

# Broker Configuration (Zerodha)
ZERODHA_API_KEY=your_api_key_here
ZERODHA_API_SECRET=your_api_secret_here
ZERODHA_USER_ID=your_user_id_here
ZERODHA_PASSWORD=your_password_here
ZERODHA_TOTP_SECRET=your_totp_secret_here

# Database Configuration
MONGODB_HOST=localhost
MONGODB_PORT=27017
MONGODB_DATABASE=friday_trading
MONGODB_USERNAME=
MONGODB_PASSWORD=

REDIS_HOST=localhost
REDIS_PORT=6379
REDIS_PASSWORD=
REDIS_DB=0

# API Configuration
API_HOST=0.0.0.0
API_PORT=8000
SECRET_KEY=your_secret_key_here
ACCESS_TOKEN_EXPIRE_MINUTES=30

# Redis Configuration (for caching and session management)
REDIS_HOST=localhost
REDIS_PORT=6379
REDIS_DB=0

# Data Provider Configuration
YAHOO_FINANCE_ENABLED=true
GITHUB_DATA_REPOS=["repo1/indian-market-data", "repo2/nse-data"]
NEWS_API_KEY=your_api_key_here

# Logging Configuration
LOG_LEVEL=INFO
LOG_FILE=logs/friday.log

# Feature Engineering Configuration
ENABLE_ALL_FEATURES=true
DEFAULT_FEATURE_SETS=price_derived,moving_averages,volatility,momentum,volume,trend

System Configuration

The main system configuration is managed through unified_config.py. Key configuration sections include:

  • Broker Settings: Zerodha trading configuration and credentials
  • Redis Configuration: Cache and session storage settings
  • Database Settings: MongoDB and Redis connection parameters
  • Feature Engineering: Default feature sets and engineering parameters for Indian markets
  • Risk Management: Risk limits and controls for F&O trading
  • Model Configuration: ML model parameters and training settings

πŸš€ Running the System

Quick Start

The easiest way to start the Friday AI Trading System:

Windows

# Start all services
start_friday.bat

# Or run individual components
run_friday.bat

Linux/macOS

# Start all services
chmod +x start_friday.sh
./start_friday.sh

# Or run individual components
chmod +x run_friday.sh
./run_friday.sh

Manual Startup

For more control over the startup process:

1. Start Database Services

# Ensure MongoDB is running
sudo systemctl start mongod  # Linux
brew services start mongodb-community  # macOS

# Ensure Redis is running
sudo systemctl start redis  # Linux
brew services start redis  # macOS

2. Start API Server

# Start FastAPI server
python -m uvicorn src.application.api.main:app --host 0.0.0.0 --port 8000 --reload

# Or with production settings
python -m uvicorn src.application.api.main:app --host 0.0.0.0 --port 8000 --workers 4

3. Initialize Trading System

# Initialize the trading system
python run_friday.py

# Or use the CLI
python src/application/cli/main.py start

Using the Command-Line Interface

The Friday AI Trading System includes a comprehensive CLI for system management:

System Commands

# Check system status
python src/application/cli/main.py status

# Start trading
python src/application/cli/main.py start

# Stop trading
python src/application/cli/main.py stop

# View system logs
python src/application/cli/main.py logs --tail 100

Feature Engineering Commands

# List available feature sets
python src/application/cli/main.py features list

# Enable specific feature sets
python src/application/cli/main.py features enable price_derived moving_averages

# Benchmark feature generation performance
python src/application/cli/main.py features benchmark --dataset-size 1month

Data Management Commands

# Fetch market data
python src/application/cli/main.py data fetch --symbol AAPL --days 30

# Process historical data
python src/application/cli/main.py data process --source yahoo --symbols AAPL,GOOGL,MSFT

# Validate data quality
python src/application/cli/main.py data validate --source market_data.csv

Portfolio Commands

# View portfolio status
python src/application/cli/main.py portfolio status

# Rebalance portfolio
python src/application/cli/main.py portfolio rebalance

# Generate performance report
python src/application/cli/main.py portfolio report --period 1month

Model Management Commands

# Train models
python src/application/cli/main.py models train --strategy momentum

# Evaluate model performance
python src/application/cli/main.py models evaluate --model ensemble

# Deploy trained models
python src/application/cli/main.py models deploy --model best_performer

Web Interface

Access the web-based dashboard at http://localhost:8000:

  • Trading Dashboard: Real-time portfolio and position monitoring
  • Strategy Performance: Strategy backtesting and performance analysis
  • Market Analysis: Market data visualization and technical analysis
  • Risk Management: Risk metrics and exposure analysis
  • System Monitoring: System health and performance metrics

βœ… System Verification

Health Check

Verify that all system components are running correctly:

# Comprehensive system check
python check_system_status.py

# Individual component checks
python src/application/cli/main.py health database
python src/application/cli/main.py health system
python src/application/cli/main.py health api

Test Trading Workflow

Run a complete test of the trading workflow:

# Run simulation mode test
python src/application/cli/main.py test simulation

# Test data pipeline
python src/application/cli/main.py test data-pipeline

# Test model predictions
python src/application/cli/main.py test models

# Test risk management
python src/application/cli/main.py test risk-management

Performance Benchmarks

Run performance benchmarks to ensure optimal operation:

# Benchmark feature engineering
python src/application/cli/main.py benchmark features

# Benchmark model inference
python src/application/cli/main.py benchmark models

# Benchmark data processing
python src/application/cli/main.py benchmark data

πŸ“š Comprehensive Documentation

The Friday AI Trading System includes extensive documentation covering all aspects of the system:

πŸ“– Core Documentation

πŸ”§ Technical Documentation

πŸ“Š Feature Documentation

πŸ“‹ Project Management

πŸ› οΈ Development & Customization

Adding New Features

The Friday AI Trading System is designed to be highly extensible. Here's how to add new features:

1. Custom Trading Strategies

# Create a new strategy in src/strategies/custom/
from src.strategies.base import BaseStrategy

class MyCustomStrategy(BaseStrategy):
    def __init__(self, config):
        super().__init__(config)
        self.name = "my_custom_strategy"
    
    def generate_signals(self, data):
        # Implement your strategy logic
        signals = []
        # ... strategy implementation
        return signals
    
    def calculate_position_size(self, signal, portfolio):
        # Implement position sizing logic
        return self.risk_manager.calculate_position_size(signal, portfolio)

2. Custom Feature Engineering

# Add custom features in src/data/processing/feature_engineering.py
from src.data.processing.feature_engineering import FeatureSet, FeatureCategory

# Define custom feature set
custom_features = FeatureSet(
    name="custom_indicators",
    category=FeatureCategory.CUSTOM,
    features=["my_indicator", "another_indicator"],
    dependencies=["open", "high", "low", "close"],
    description="My custom technical indicators"
)

# Register the feature set
feature_engineer.register_feature_set(custom_features)

3. Custom Data Sources

# Create custom data source in src/data/collection/
from src.data.collection.base import BaseDataSource

class MyDataSource(BaseDataSource):
    def __init__(self, config):
        super().__init__(config)
        self.source_name = "my_data_source"
    
    def fetch_data(self, symbol, start_date, end_date):
        # Implement data fetching logic
        data = self._fetch_from_api(symbol, start_date, end_date)
        return self._validate_and_clean(data)

4. Custom Risk Management Rules

# Add custom risk rules in src/risk/
from src.risk.base import BaseRiskRule

class MyRiskRule(BaseRiskRule):
    def __init__(self, config):
        super().__init__(config)
        self.rule_name = "my_risk_rule"
    
    def evaluate(self, portfolio, proposed_trade):
        # Implement risk evaluation logic
        risk_score = self._calculate_risk(portfolio, proposed_trade)
        return risk_score < self.threshold

Testing Framework

Unit Tests

# Run all unit tests
python -m pytest tests/unit/ -v

# Run specific test module
python -m pytest tests/unit/test_feature_engineering.py -v

# Run with coverage
python -m pytest tests/unit/ --cov=src --cov-report=html

Integration Tests

# Run integration tests
python -m pytest tests/integration/ -v

# Test specific integration
python -m pytest tests/integration/test_data_pipeline.py -v

Performance Tests

# Run performance benchmarks
python -m pytest tests/performance/ -v

# Benchmark feature engineering
python feature_engineering_benchmark.py

Code Quality

The project follows strict code quality standards:

# Code formatting with Black
black src/ tests/

# Import sorting with isort
isort src/ tests/

# Linting with flake8
flake8 src/ tests/

# Type checking with mypy
mypy src/

# Security scanning with bandit
bandit -r src/

πŸ“‹ Complete Feature Matrix

πŸ” System Capabilities Overview

Category Feature Status Description
🧠 AI & ML Machine Learning Models βœ… Ensemble of regression, classification, and deep learning models
Knowledge Extraction βœ… Automated extraction of trading strategies from documents
Knowledge Extraction Engine βœ… PDF/document processing for trading rules
Ensemble ML Models βœ… Multiple models for prediction accuracy
Feature Engineering Pipeline βœ… 42+ technical indicators across 6 categories
Model Performance Monitoring βœ… Real-time model accuracy tracking
Automated Model Training βœ… Scheduled retraining and deployment
πŸ“Š Data Management Indian Market Data Integration βœ… Yahoo Finance, GitHub repositories for NSE/BSE data
Real-time Market Data βœ… Live price feeds and market updates
Alternative Data Processing βœ… News, sentiment, earnings, economic data for Indian markets
Data Validation & Cleaning βœ… Quality assurance and outlier detection
Historical Data Management βœ… Efficient storage and retrieval
Custom Data Source Framework βœ… Extensible data provider integration
⚑ Trading Engine Smart Order Routing βœ… Intelligent order execution optimization
Multiple Order Types βœ… Market, limit, stop, bracket, trailing stop
Position Management βœ… Real-time position tracking and management
Slippage Control βœ… Advanced execution cost modeling
Multi-Broker Support βœ… Zerodha for Indian F&O markets
Paper Trading βœ… Risk-free strategy testing
🎯 Strategy Framework Pre-built Strategies βœ… Momentum, mean reversion, pairs trading
Custom Strategy Development βœ… Framework for proprietary strategies
Strategy Backtesting βœ… Historical performance analysis
Walk-Forward Analysis βœ… Robust strategy validation
Parameter Optimization βœ… Genetic algorithm optimization
Signal Generation βœ… Multi-timeframe signal creation
πŸ’Ό Portfolio Management Modern Portfolio Theory βœ… Risk-return optimization
Dynamic Asset Allocation βœ… Adaptive allocation based on conditions
Tax-Aware Trading βœ… FIFO/LIFO and wash sale compliance
Performance Analytics βœ… Sharpe ratio, drawdown, attribution
Multi-Asset Support βœ… Indian equities, F&O (futures and options) on NSE/BSE
Rebalancing Engine βœ… Automated portfolio rebalancing
πŸ›‘οΈ Risk Management Real-time Risk Monitoring βœ… Continuous portfolio risk assessment
Value at Risk (VaR) βœ… Monte Carlo and historical VaR
Stress Testing βœ… Scenario analysis capabilities
Position Sizing βœ… Risk-based position size calculation
Stop-Loss Management βœ… Automated stop-loss execution
Exposure Controls βœ… Sector, geographic, factor limits
πŸ—οΈ Infrastructure Microservices Architecture βœ… Scalable, containerized services
Event-Driven Design βœ… High-performance async processing
Database Integration βœ… MongoDB, Redis, SQLite support
RESTful API βœ… Comprehensive API with authentication
WebSocket Real-time βœ… Live data streaming
Docker Support βœ… Containerized deployment
πŸ“± User Interface Web Dashboard βœ… Real-time trading dashboard
Command Line Interface βœ… Full CLI for system management
API Documentation βœ… Interactive API documentation
Performance Visualizations βœ… Charts and analytics
Mobile Responsiveness βœ… Mobile-friendly interface
πŸ”§ Development Tools Comprehensive Testing βœ… Unit, integration, performance tests
Code Quality Tools βœ… Linting, formatting, type checking
Documentation System βœ… Extensive documentation
Extension Framework βœ… Plugin architecture for customization
Debugging Tools βœ… Logging, monitoring, profiling

πŸ“ˆ Performance Characteristics

Metric Specification Details
Latency < 50ms Order execution latency (local network)
Throughput 1000+ orders/sec Peak order processing capacity
Data Processing 10k+ symbols Concurrent symbol processing
Memory Usage < 2GB Base system memory footprint
Storage Scalable MongoDB for unlimited historical data
Uptime 99.9%+ System availability target
Recovery Time < 30 seconds Automatic system recovery

🌐 Supported Markets & Assets

Market Asset Types Status Broker Integration
Indian Equities Stocks, ETFs βœ… Zerodha
NSE F&O Index Futures, Stock Futures βœ… Zerodha
NSE Options Index Options, Stock Options βœ… Zerodha
BSE Stocks, ETFs βœ… Zerodha

πŸ”Œ Integration Capabilities

Integration Type Supported Systems Status
Trading Brokers Zerodha Kite API βœ…
Data Providers Yahoo Finance, GitHub Repositories βœ…
News Sources News API, Reddit, Twitter (Indian markets focus) βœ…
Cloud Platforms AWS, GCP, Azure βœ…
Databases MongoDB, PostgreSQL, MySQL βœ…
Message Queues Redis, RabbitMQ, Apache Kafka βœ…
Monitoring Prometheus, Grafana, ELK Stack βœ…

πŸš€ Getting Started Quickly

⚑ 5-Minute Quick Start

  1. Install Dependencies

    pip install friday-ai-trading
  2. Configure Environment

    friday init --broker simulation
  3. Start Trading

    friday start --strategy momentum --capital 100000
  4. Monitor Performance

    friday dashboard

🎯 Choose Your Path

For Algorithmic Traders

# High-frequency trading setup
friday create-strategy --type momentum --frequency 1m --risk-level aggressive

For Portfolio Managers

# Long-term portfolio optimization
friday create-portfolio --type diversified --rebalance monthly --risk moderate

For Researchers

# Research and backtesting setup
friday research --strategy custom --backtest-period 5y --walk-forward true

For Developers

# Development environment setup
friday dev-setup --install-deps --configure-ide --enable-debug

The Friday AI Trading System is designed to handle a wide variety of real-world trading scenarios and use cases. Here are detailed examples of how the system can be applied:

🏒 Institutional Trading

Indian F&O Trading Strategy

# Nifty options strategy with risk controls
strategy_config = {
    "strategy_type": "options_momentum",
    "timeframes": ["5m", "15m", "1h"],
    "universe": ["NIFTY", "BANKNIFTY"],
    "max_positions": 10,
    "position_sizing": "kelly_criterion",
    "risk_budget": 0.02,  # 2% daily VaR
    "execution": "market",
    "expiry_management": "weekly"
}

# Deploy Nifty options strategy
friday.deploy_strategy("nifty_options", strategy_config)

Features Used:

  • Indian F&O market data processing
  • Options Greeks calculation
  • Real-time risk monitoring
  • Expiry management
  • Performance attribution analysis

Indian Equity Portfolio Management

# Diversified Indian equity strategy
portfolio_config = {
    "asset_classes": {
        "large_cap": {"allocation": 0.40, "sectors": ["Banking", "IT", "Pharma"]},
        "mid_cap": {"allocation": 0.30, "sectors": ["Auto", "FMCG"]},
        "small_cap": {"allocation": 0.20, "sectors": ["Textiles", "Chemicals"]},
        "cash": {"allocation": 0.10}
    },
    "rebalancing": "monthly",
    "risk_budget": 0.15,  # 15% annual volatility target
    "benchmark": "NIFTY50"
}

friday.create_multi_asset_portfolio("indian_equity_diversified", portfolio_config)

🏠 Retail Trading

Personal Retirement Portfolio

# Conservative long-term growth strategy
retirement_config = {
    "investment_horizon": "20_years",
    "risk_tolerance": "moderate",
    "goal": "retirement_income",
    "target_amount": 1000000,
    "monthly_contribution": 2000,
    "asset_allocation": {
        "growth_stocks": 0.40,
        "value_stocks": 0.20,
        "international": 0.20,
        "bonds": 0.15,
        "cash": 0.05
    },
    "rebalancing": "quarterly",
    "tax_optimization": True
}

friday.create_retirement_strategy("retirement_2045", retirement_config)

Features Used:

  • Goal-based investing
  • Tax-loss harvesting
  • Automatic rebalancing
  • Dollar-cost averaging
  • Performance tracking against retirement goals

Intraday F&O Trading

# Bank Nifty intraday scalping strategy
day_trading_config = {
    "strategy_type": "scalping",
    "timeframe": "1m",
    "symbols": ["BANKNIFTY", "NIFTY"],
    "session_hours": "09:15-15:30",
    "max_daily_loss": 5000,
    "profit_target": 10000,
    "max_positions": 3,
    "position_size": "lot_based",
    "lots_per_trade": 2
}

friday.deploy_strategy("banknifty_scalping", day_trading_config)

πŸŽ“ Educational & Research

Academic Research on Market Inefficiencies

# Research strategy for testing market anomalies
research_config = {
    "research_question": "earnings_announcement_drift",
    "universe": "Russell2000",
    "factors": ["earnings_surprise", "analyst_revisions", "momentum"],
    "holding_period": "1_month",
    "rebalance_frequency": "monthly",
    "backtest_period": "2010-2023",
    "transaction_costs": True,
    "benchmark": "Russell2000"
}

# Run research backtest
results = friday.research_backtest("earnings_drift_study", research_config)
friday.generate_research_report(results)

Student Paper Trading Competition

# Educational trading simulation
education_config = {
    "mode": "simulation",
    "initial_capital": 100000,
    "allowed_assets": ["stocks", "etfs"],
    "risk_limits": {
        "max_position_size": 0.10,  # 10% max per position
        "max_daily_loss": 0.03,     # 3% daily loss limit
        "max_leverage": 1.0         # No leverage
    },
    "learning_features": {
        "trade_explanation": True,
        "risk_warnings": True,
        "educational_notes": True
    }
}

friday.create_educational_account("student_trader", education_config)

🏭 Algorithmic Trading Strategies

Market Making Strategy

# Automated market making for liquid stocks
market_making_config = {
    "strategy_type": "market_making",
    "symbols": ["SPY", "QQQ", "IWM"],
    "spread_target": 0.01,  # 1 cent spread
    "inventory_limits": {
        "max_long": 1000,
        "max_short": 1000
    },
    "quote_size": 100,
    "risk_controls": {
        "max_inventory_deviation": 500,
        "stop_loss": 0.02
    }
}

friday.deploy_strategy("market_maker", market_making_config)

Statistical Arbitrage

# Pairs trading strategy
pairs_config = {
    "strategy_type": "statistical_arbitrage",
    "method": "pairs_trading",
    "universe": "SP500",
    "selection_criteria": {
        "correlation_threshold": 0.8,
        "cointegration_p_value": 0.05,
        "sector_neutral": True
    },
    "entry_threshold": 2.0,  # 2 standard deviations
    "exit_threshold": 0.5,   # 0.5 standard deviations
    "stop_loss": 3.0,        # 3 standard deviations
    "max_pairs": 20
}

friday.deploy_strategy("stat_arb", pairs_config)

News-Based Trading

# Event-driven strategy based on news sentiment
news_trading_config = {
    "strategy_type": "event_driven",
    "data_sources": ["news_api", "earnings_calendar", "sec_filings"],
    "sentiment_model": "transformer_based",
    "event_types": ["earnings", "FDA_approval", "merger_announcement"],
    "reaction_speed": "real_time",
    "holding_period": "1_day",
    "position_sizing": "sentiment_weighted"
}

friday.deploy_strategy("news_trader", news_trading_config)

🏦 Risk Management Use Cases

Portfolio Risk Monitoring

# Real-time risk dashboard for institutional portfolio
risk_monitoring = friday.create_risk_monitor({
    "portfolio_id": "institutional_equity_fund",
    "risk_metrics": [
        "VaR_95", "CVaR_95", "beta", "tracking_error",
        "sector_exposure", "factor_exposure"
    ],
    "alert_thresholds": {
        "daily_var": 0.02,
        "sector_concentration": 0.25,
        "single_position": 0.05
    },
    "reporting_frequency": "real_time"
})

Regulatory Compliance

# Compliance monitoring for regulated funds
compliance_config = {
    "fund_type": "mutual_fund",
    "regulations": ["40_act", "liquidity_rule"],
    "constraints": {
        "single_issuer_limit": 0.05,  # 5% limit
        "liquidity_requirements": {
            "daily_liquid": 0.15,
            "weekly_liquid": 0.30
        },
        "derivative_exposure": 0.10
    },
    "monitoring": "continuous",
    "reporting": "daily"
}

friday.setup_compliance_monitoring("regulated_fund", compliance_config)

πŸ“ˆ Backtesting & Strategy Development

Strategy Research Pipeline

# Comprehensive strategy development workflow
research_pipeline = friday.create_research_pipeline({
    "data_preparation": {
        "universe": "Russell3000",
        "factors": ["value", "momentum", "quality", "volatility"],
        "period": "2000-2023",
        "frequency": "daily"
    },
    "strategy_generation": {
        "methods": ["machine_learning", "traditional_factors"],
        "models": ["random_forest", "xgboost", "linear"],
        "cross_validation": "walk_forward"
    },
    "backtesting": {
        "transaction_costs": True,
        "market_impact": True,
        "slippage_model": "linear",
        "capacity_analysis": True
    },
    "optimization": {
        "objective": "risk_adjusted_return",
        "constraints": ["turnover", "concentration", "sector_neutral"]
    }
})

# Run the complete pipeline
results = research_pipeline.execute()

🌐 Alternative Data Strategies

Satellite Data Agriculture Trading

# Commodity trading based on satellite crop data
satellite_strategy = {
    "asset_class": "agricultural_commodities",
    "instruments": ["corn_futures", "soybean_futures", "wheat_futures"],
    "data_sources": {
        "satellite_imagery": "crop_yield_estimates",
        "weather_data": "precipitation_temperature",
        "government_reports": "usda_crop_reports"
    },
    "prediction_horizon": "3_months",
    "model_type": "ensemble_ml",
    "rebalance_frequency": "weekly"
}

friday.deploy_strategy("ag_satellite", satellite_strategy)

Social Sentiment Trading

# Equity trading based on social media sentiment
social_sentiment_config = {
    "strategy_type": "sentiment_momentum",
    "data_sources": ["twitter", "reddit", "news_articles"],
    "sentiment_analysis": {
        "model": "transformer_based",
        "languages": ["english"],
        "entities": ["stocks", "companies", "sectors"]
    },
    "universe": "SPY_components",
    "signal_aggregation": "weighted_average",
    "holding_period": "1_week",
    "position_sizing": "sentiment_confidence"
}

friday.deploy_strategy("social_sentiment", social_sentiment_config)

πŸ”„ Integration Examples

Multi-Broker Portfolio Management

# Manage portfolio across multiple brokers
multi_broker_config = {
    "brokers": {
        "zerodha": {"allocation": 0.50, "markets": ["NSE", "BSE"]},
        "alpaca": {"allocation": 0.30, "markets": ["NYSE", "NASDAQ"]},
        "interactive_brokers": {"allocation": 0.20, "markets": ["global"]}
    },
    "rebalancing": "daily",
    "currency_hedging": True,
    "tax_optimization": True
}

friday.setup_multi_broker_management(multi_broker_config)

Third-Party System Integration

# Integration with external portfolio management systems
integration_config = {
    "external_systems": {
        "bloomberg_terminal": {"data_feed": True, "portfolio_sync": False},
        "refinitiv_eikon": {"market_data": True, "fundamentals": True},
        "custom_oms": {"order_routing": True, "position_sync": True}
    },
    "sync_frequency": "real_time",
    "conflict_resolution": "friday_priority"
}

friday.setup_external_integrations(integration_config)

These use cases demonstrate the flexibility and power of the Friday AI Trading System across different trading styles, risk tolerances, and market conditions. The system can be configured for everything from conservative retirement planning to aggressive algorithmic F&O trading strategies in Indian markets.

⚠️ Disclaimer & Legal Notice

IMPORTANT: Please read this disclaimer carefully before using the Friday AI Trading System.

Trading Risk Warning

  • Trading involves substantial risk: Financial trading carries significant risk of loss and may not be suitable for all investors
  • Past performance does not guarantee future results: Historical backtesting results do not guarantee future trading performance
  • AI and ML limitations: Machine learning models can fail and produce incorrect predictions
  • System failures: Technical failures, bugs, or connectivity issues can result in trading losses
  • Market volatility: Extreme market conditions can cause unexpected losses

Software Disclaimer

  • Educational and research purposes: This software is provided for educational and research purposes only
  • No financial advice: This system does not constitute financial advice or investment recommendations
  • Use at your own risk: Users assume full responsibility for all trading decisions and outcomes
  • No warranty: The software is provided "as is" without warranty of any kind
  • Third-party services: We are not responsible for third-party services, APIs, or data providers

Legal Compliance

  • Regulatory compliance: Users are responsible for complying with all applicable financial regulations
  • Licensing requirements: Some jurisdictions require licenses for automated trading
  • Tax obligations: Users are responsible for reporting and paying taxes on trading activities
  • Data usage: Ensure compliance with data provider terms of service

Limitation of Liability

The developers and contributors of the Friday AI Trading System shall not be liable for any:

  • Financial losses resulting from use of this software
  • Damages caused by software bugs, errors, or failures
  • Losses due to third-party service outages or data errors
  • Consequences of unauthorized access or security breaches

Recommendation

Always consult with qualified financial advisors before making investment decisions. Start with small amounts and thoroughly test strategies in simulation mode before using real money.

πŸ™ Acknowledgements

The Friday AI Trading System is built on the foundations of many excellent open-source projects and the contributions of the developer community:

Core Technologies

  • Python Ecosystem: NumPy, Pandas, scikit-learn, TensorFlow, PyTorch
  • Web Framework: FastAPI, Uvicorn, WebSockets
  • Databases: MongoDB, Redis, SQLite
  • Data Analysis: TA-Lib, matplotlib, seaborn
  • Testing: pytest, coverage.py

Data Providers

  • Yahoo Finance: Historical and real-time market data
  • Alpha Vantage: Financial data and fundamentals
  • News APIs: Real-time news and sentiment data

Trading Infrastructure

  • Zerodha Kite: Indian stock market integration

Special Thanks

  • Open Source Community: For the foundational libraries and tools
  • Financial Data Providers: For making market data accessible
  • Trading Community: For sharing knowledge and best practices
  • Contributors: Shruti Sharma and Vatsal Saxena

Research and Education

  • Academic Papers: Implementation based on peer-reviewed financial research
  • Trading Literature: Insights from classic and modern trading books
  • Online Communities: Learning from trading and quantitative finance forums

Friday AI Trading System - Empowering Intelligent Trading Through AI

Built with ❀️ Friday

About

This is an AI Trading System.The core idea is to create a system that can think on its own and make decisions and stratergies to make trades in FnO segment in Indian stock market.

Topics

Resources

Code of conduct

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages