Skip to content

Commit

Permalink
sagemathgh-38622: pep8 fixes in schemes/toric
Browse files Browse the repository at this point in the history
    
mostly done with `autopep8` for codes `E231,E201,E202`

### 📝 Checklist

- [x] The title is concise and informative.
- [x] The description explains in detail what this PR is about.
- [ ] I have linked a relevant issue or discussion.
- [ ] I have created tests covering the changes.
- [ ] I have updated the documentation and checked the documentation
preview.
    
URL: sagemath#38622
Reported by: Frédéric Chapoton
Reviewer(s): David Coudert
  • Loading branch information
Release Manager committed Sep 5, 2024
2 parents f3b4c7f + d91d631 commit eb066da
Show file tree
Hide file tree
Showing 4 changed files with 104 additions and 104 deletions.
6 changes: 3 additions & 3 deletions src/sage/schemes/toric/ideal.py
Original file line number Diff line number Diff line change
Expand Up @@ -354,8 +354,8 @@ def _naive_ideal(self, ring):
x = ring.gens()
binomials = []
for row in self.ker().matrix().rows():
xpos = prod(x[i]**max( row[i],0) for i in range(0,len(x)))
xneg = prod(x[i]**max(-row[i],0) for i in range(0,len(x)))
xpos = prod(x[i]**max(row[i], 0) for i in range(len(x)))
xneg = prod(x[i]**max(-row[i], 0) for i in range(len(x)))
binomials.append(xpos - xneg)
return ring.ideal(binomials)

Expand Down Expand Up @@ -445,6 +445,6 @@ def _ideal_HostenSturmfels(self):
J = self._naive_ideal(ring)
if J.is_zero():
return J
for i in range(0,self.nvariables()):
for i in range(self.nvariables()):
J = self._ideal_quotient_by_variable(ring, J, i)
return J
168 changes: 84 additions & 84 deletions src/sage/schemes/toric/library.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,44 +58,44 @@
# The combinatorial data of the toric varieties is stored separately here
# since we might want to use it later on to do the reverse lookup.
toric_varieties_rays_cones = {
'dP6':[
'dP6': [
[(0, 1), (-1, 0), (-1, -1), (0, -1), (1, 0), (1, 1)],
[[0,1],[1,2],[2,3],[3,4],[4,5],[5,0]] ],
'dP7':[
[[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 0]]],
'dP7': [
[(0, 1), (-1, 0), (-1, -1), (0, -1), (1, 0)],
[[0,1],[1,2],[2,3],[3,4],[4,0]] ],
'dP8':[
[(1,1), (0, 1), (-1, -1), (1, 0)],
[[0,1],[1,2],[2,3],[3,0]]
[[0, 1], [1, 2], [2, 3], [3, 4], [4, 0]]],
'dP8': [
[(1, 1), (0, 1), (-1, -1), (1, 0)],
[[0, 1], [1, 2], [2, 3], [3, 0]]
],
'P1xP1':[
'P1xP1': [
[(1, 0), (-1, 0), (0, 1), (0, -1)],
[[0,2],[2,1],[1,3],[3,0]] ],
'P1xP1_Z2':[
[[0, 2], [2, 1], [1, 3], [3, 0]]],
'P1xP1_Z2': [
[(1, 1), (-1, -1), (-1, 1), (1, -1)],
[[0,2],[2,1],[1,3],[3,0]] ],
'P1':[
[[0, 2], [2, 1], [1, 3], [3, 0]]],
'P1': [
[(1,), (-1,)],
[[0],[1]] ],
'P2':[
[(1,0), (0, 1), (-1, -1)],
[[0,1],[1,2],[2,0]] ],
'A1':[
[[0], [1]]],
'P2': [
[(1, 0), (0, 1), (-1, -1)],
[[0, 1], [1, 2], [2, 0]]],
'A1': [
[(1,)],
[[0]] ],
'A2':[
[[0]]],
'A2': [
[(1, 0), (0, 1)],
[[0,1]] ],
'A2_Z2':[
[[0, 1]]],
'A2_Z2': [
[(1, 0), (1, 2)],
[[0,1]] ],
'P1xA1':[
[[0, 1]]],
'P1xA1': [
[(1, 0), (-1, 0), (0, 1)],
[[0,2],[2,1]] ],
'Conifold':[
[[0, 2], [2, 1]]],
'Conifold': [
[(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)],
[[0,1,2,3]] ],
'dP6xdP6':[
[[0, 1, 2, 3]]],
'dP6xdP6': [
[(0, 1, 0, 0), (-1, 0, 0, 0), (-1, -1, 0, 0),
(0, -1, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0),
(0, 0, 0, 1), (0, 0, -1, 0), (0, 0, -1, -1),
Expand All @@ -108,74 +108,74 @@
[3, 4, 8, 9], [3, 4, 9, 10], [3, 4, 10, 11], [3, 4, 6, 11],
[4, 5, 6, 7], [4, 5, 7, 8], [4, 5, 8, 9], [4, 5, 9, 10],
[4, 5, 10, 11], [4, 5, 6, 11], [0, 5, 6, 7], [0, 5, 7, 8],
[0, 5, 8, 9], [0, 5, 9, 10], [0, 5, 10, 11], [0, 5, 6, 11]] ],
'Cube_face_fan':[
[0, 5, 8, 9], [0, 5, 9, 10], [0, 5, 10, 11], [0, 5, 6, 11]]],
'Cube_face_fan': [
[(1, 1, 1), (1, -1, 1), (-1, 1, 1), (-1, -1, 1),
(-1, -1, -1), (-1, 1, -1), (1, -1, -1), (1, 1, -1)],
[[0,1,2,3], [4,5,6,7], [0,1,7,6], [4,5,3,2], [0,2,5,7], [4,6,1,3]] ],
'Cube_sublattice':[
[[0, 1, 2, 3], [4, 5, 6, 7], [0, 1, 7, 6], [4, 5, 3, 2], [0, 2, 5, 7], [4, 6, 1, 3]]],
'Cube_sublattice': [
[(1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, 1, 1),
(-1, 0, 0), (0, -1, 0), (0, 0, -1), (1, -1, -1)],
[[0,1,2,3],[4,5,6,7],[0,1,7,6],[4,5,3,2],[0,2,5,7],[4,6,1,3]] ],
'Cube_nonpolyhedral':[
[[0, 1, 2, 3], [4, 5, 6, 7], [0, 1, 7, 6], [4, 5, 3, 2], [0, 2, 5, 7], [4, 6, 1, 3]]],
'Cube_nonpolyhedral': [
[(1, 2, 3), (1, -1, 1), (-1, 1, 1), (-1, -1, 1),
(-1, -1, -1), (-1, 1, -1), (1, -1, -1), (1, 1, -1)],
[[0,1,2,3],[4,5,6,7],[0,1,7,6],[4,5,3,2],[0,2,5,7],[4,6,1,3]] ],
'BCdlOG':[
[[0, 1, 2, 3], [4, 5, 6, 7], [0, 1, 7, 6], [4, 5, 3, 2], [0, 2, 5, 7], [4, 6, 1, 3]]],
'BCdlOG': [
[(-1, 0, 0, 2, 3), # 0
( 0,-1, 0, 2, 3), # 1
( 0, 0,-1, 2, 3), # 2
( 0, 0,-1, 1, 2), # 3
( 0, 0, 0,-1, 0), # 4
( 0, 0, 0, 0,-1), # 5
( 0, 0, 0, 2, 3), # 6
( 0, 0, 1, 2, 3), # 7
( 0, 0, 2, 2, 3), # 8
( 0, 0, 1, 1, 1), # 9
( 0, 1, 2, 2, 3), # 10
( 0, 1, 3, 2, 3), # 11
( 1, 0, 4, 2, 3)], # 12
[ [0,6,7,1,4], [0,6,10,2,4], [0,6,1,2,4], [0,9,7,1,5], [0,6,7,1,5],
[0,6,10,2,5], [0,6,1,2,5], [0,9,1,4,5], [0,6,10,4,11],[0,6,7,4,11],
[0,6,10,5,11], [0,9,7,5,11], [0,6,7,5,11], [0,9,4,5,11], [0,10,4,5,11],
[0,9,7,1,8], [0,9,1,4,8], [0,7,1,4,8], [0,9,7,11,8], [0,9,4,11,8],
[0,7,4,11,8], [0,10,2,4,3], [0,1,2,4,3], [0,10,2,5,3], [0,1,2,5,3],
[0,10,4,5,3], [0,1,4,5,3], [12,6,7,1,4], [12,6,10,2,4],[12,6,1,2,4],
[12,9,7,1,5], [12,6,7,1,5], [12,6,10,2,5], [12,6,1,2,5], [12,9,1,4,5],
[12,6,10,4,11],[12,6,7,4,11], [12,6,10,5,11],[12,9,7,5,11],[12,6,7,5,11],
[12,9,4,5,11], [12,10,4,5,11],[12,9,7,1,8], [12,9,1,4,8], [12,7,1,4,8],
[12,9,7,11,8], [12,9,4,11,8], [12,7,4,11,8], [12,10,2,4,3],[12,1,2,4,3],
[12,10,2,5,3], [12,1,2,5,3], [12,10,4,5,3], [12,1,4,5,3] ] ],
'BCdlOG_base':[
(0, -1, 0, 2, 3), # 1
(0, 0, -1, 2, 3), # 2
(0, 0, -1, 1, 2), # 3
(0, 0, 0, -1, 0), # 4
(0, 0, 0, 0, -1), # 5
(0, 0, 0, 2, 3), # 6
(0, 0, 1, 2, 3), # 7
(0, 0, 2, 2, 3), # 8
(0, 0, 1, 1, 1), # 9
(0, 1, 2, 2, 3), # 10
(0, 1, 3, 2, 3), # 11
(1, 0, 4, 2, 3)], # 12
[[0, 6, 7, 1, 4], [0, 6, 10, 2, 4], [0, 6, 1, 2, 4], [0, 9, 7, 1, 5], [0, 6, 7, 1, 5],
[0, 6, 10, 2, 5], [0, 6, 1, 2, 5], [0, 9, 1, 4, 5], [0, 6, 10, 4, 11], [0, 6, 7, 4, 11],
[0, 6, 10, 5, 11], [0, 9, 7, 5, 11], [0, 6, 7, 5, 11], [0, 9, 4, 5, 11], [0, 10, 4, 5, 11],
[0, 9, 7, 1, 8], [0, 9, 1, 4, 8], [0, 7, 1, 4, 8], [0, 9, 7, 11, 8], [0, 9, 4, 11, 8],
[0, 7, 4, 11, 8], [0, 10, 2, 4, 3], [0, 1, 2, 4, 3], [0, 10, 2, 5, 3], [0, 1, 2, 5, 3],
[0, 10, 4, 5, 3], [0, 1, 4, 5, 3], [12, 6, 7, 1, 4], [12, 6, 10, 2, 4], [12, 6, 1, 2, 4],
[12, 9, 7, 1, 5], [12, 6, 7, 1, 5], [12, 6, 10, 2, 5], [12, 6, 1, 2, 5], [12, 9, 1, 4, 5],
[12, 6, 10, 4, 11], [12, 6, 7, 4, 11], [12, 6, 10, 5, 11], [12, 9, 7, 5, 11], [12, 6, 7, 5, 11],
[12, 9, 4, 5, 11], [12, 10, 4, 5, 11], [12, 9, 7, 1, 8], [12, 9, 1, 4, 8], [12, 7, 1, 4, 8],
[12, 9, 7, 11, 8], [12, 9, 4, 11, 8], [12, 7, 4, 11, 8], [12, 10, 2, 4, 3], [12, 1, 2, 4, 3],
[12, 10, 2, 5, 3], [12, 1, 2, 5, 3], [12, 10, 4, 5, 3], [12, 1, 4, 5, 3]]],
'BCdlOG_base': [
[(-1, 0, 0),
( 0,-1, 0),
( 0, 0,-1),
( 0, 0, 1),
( 0, 1, 2),
( 0, 1, 3),
( 1, 0, 4)],
[[0,4,2],[0,4,5],[0,5,3],[0,1,3],[0,1,2],
[6,4,2],[6,4,5],[6,5,3],[6,1,3],[6,1,2]] ],
'P2_112':[
[(1,0), (0, 1), (-1, -2)],
[[0,1],[1,2],[2,0]] ],
'P2_123':[
[(1,0), (0, 1), (-2, -3)],
[[0,1],[1,2],[2,0]] ],
'P4_11169':[
(0, -1, 0),
(0, 0, -1),
(0, 0, 1),
(0, 1, 2),
(0, 1, 3),
(1, 0, 4)],
[[0, 4, 2], [0, 4, 5], [0, 5, 3], [0, 1, 3], [0, 1, 2],
[6, 4, 2], [6, 4, 5], [6, 5, 3], [6, 1, 3], [6, 1, 2]]],
'P2_112': [
[(1, 0), (0, 1), (-1, -2)],
[[0, 1], [1, 2], [2, 0]]],
'P2_123': [
[(1, 0), (0, 1), (-2, -3)],
[[0, 1], [1, 2], [2, 0]]],
'P4_11169': [
[(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (-9, -6, -1, -1)],
[[0,1,2,3],[0,1,2,4],[0,1,3,4],[0,2,3,4],[1,2,3,4]] ],
'P4_11169_resolved':[
[[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 3, 4], [0, 2, 3, 4], [1, 2, 3, 4]]],
'P4_11169_resolved': [
[(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (-9, -6, -1, -1), (-3, -2, 0, 0)],
[[0, 1, 2, 3], [0, 1, 3, 4], [0, 1, 2, 4], [1, 3, 4, 5], [0, 3, 4, 5],
[1, 2, 4, 5], [0, 2, 4, 5], [1, 2, 3, 5], [0, 2, 3, 5]] ],
'P4_11133':[
[1, 2, 4, 5], [0, 2, 4, 5], [1, 2, 3, 5], [0, 2, 3, 5]]],
'P4_11133': [
[(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (-3, -3, -1, -1)],
[[0,1,2,3],[0,1,2,4],[0,1,3,4],[0,2,3,4],[1,2,3,4]] ],
'P4_11133_resolved':[
[[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 3, 4], [0, 2, 3, 4], [1, 2, 3, 4]]],
'P4_11133_resolved': [
[(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (-3, -3, -1, -1), (-1, -1, 0, 0)],
[[0, 1, 2, 3], [0, 1, 3, 4], [0, 1, 2, 4], [1, 3, 4, 5], [0, 3, 4, 5],
[1, 2, 4, 5], [0, 2, 4, 5], [1, 2, 3, 5], [0, 2, 3, 5]] ]
[1, 2, 4, 5], [0, 2, 4, 5], [1, 2, 3, 5], [0, 2, 3, 5]]]
}


Expand Down Expand Up @@ -264,7 +264,7 @@ def _make_CPRFanoToricVariety(self, name, coordinate_names, base_ring):
polytope = LatticePolytope(rays, lattice=ToricLattice(len(rays[0])))
points = [tuple(_) for _ in polytope.points()]
ray2point = [points.index(r) for r in rays]
charts = [ [ray2point[i] for i in c] for c in cones ]
charts = [[ray2point[i] for i in c] for c in cones]
self.__dict__[dict_key] = \
CPRFanoToricVariety(Delta_polar=polytope,
coordinate_points=ray2point,
Expand Down Expand Up @@ -868,7 +868,7 @@ def Cube_nonpolyhedral(self, names='z+', base_ring=QQ):
"""
return self._make_ToricVariety('Cube_nonpolyhedral', names, base_ring)

def Cube_deformation(self,k, names=None, base_ring=QQ):
def Cube_deformation(self, k, names=None, base_ring=QQ):
r"""
Construct, for each `k\in\ZZ_{\geq 0}`, a toric variety with
`\ZZ_k`-torsion in the Chow group.
Expand Down Expand Up @@ -1268,7 +1268,7 @@ def WP(self, *q, **kw):
rays = rays + [v]
w_c = w[:i] + w[i + 1:]
cones = cones + [tuple(w_c)]
fan = Fan(cones,rays)
fan = Fan(cones, rays)
return ToricVariety(fan, coordinate_names=names, base_ring=base_ring)

def torus(self, n, names='z+', base_ring=QQ):
Expand Down
6 changes: 3 additions & 3 deletions src/sage/schemes/toric/sheaf/klyachko.py
Original file line number Diff line number Diff line change
Expand Up @@ -605,7 +605,7 @@ def cohomology_complex(self, m):
C = fan.complex()
CV = []
F = self.base_ring()
for dim in range(1,fan.dim()+1):
for dim in range(1, fan.dim()+1):
codim = fan.dim() - dim
d_C = C.differential(codim)
d_V = []
Expand All @@ -616,7 +616,7 @@ def cohomology_complex(self, m):
sigma = fan(dim-1)[i]
if sigma.is_face_of(tau):
pr = self.E_quotient_projection(sigma, tau, m)
d = d_C[i,j] * pr.matrix().transpose()
d = d_C[i, j] * pr.matrix().transpose()
else:
E_sigma = self.E_quotient(sigma, m)
E_tau = self.E_quotient(tau, m)
Expand Down Expand Up @@ -695,7 +695,7 @@ def cohomology(self, degree=None, weight=None, dim=False):
except KeyError:
HH[d] = FreeModule(self.base_ring(), 0)
if dim:
HH = vector(ZZ, [HH[i].rank() for i in range(space_dim+1) ])
HH = vector(ZZ, [HH[i].rank() for i in range(space_dim+1)])
return HH

def __richcmp__(self, other, op):
Expand Down
28 changes: 14 additions & 14 deletions src/sage/schemes/toric/toric_subscheme.py
Original file line number Diff line number Diff line change
Expand Up @@ -328,14 +328,14 @@ def pullback_polynomial(p):
result = R.zero()
for coefficient, monomial in p:
exponent = monomial.exponents()[0]
exponent = [ exponent[i] for i in cone.ambient_ray_indices() ]
exponent = vector(ZZ,exponent)
exponent = [exponent[i] for i in cone.ambient_ray_indices()]
exponent = vector(ZZ, exponent)
m = n_rho_matrix.solve_right(exponent)
assert all(x in ZZ for x in m), \
'The polynomial '+str(p)+' does not define a ZZ-divisor!'
f'The polynomial {p} does not define a ZZ-divisor!'
m_coeffs = dualcone.Hilbert_coefficients(m)
result += coefficient * prod(R.gen(i)**m_coeffs[i]
for i in range(0,R.ngens()))
for i in range(R.ngens()))
return result

# construct the affine algebraic scheme to use as patch
Expand All @@ -353,7 +353,7 @@ def pullback_polynomial(p):
if cone.is_smooth():
x = ambient.coordinate_ring().gens()
phi = []
for i in range(0,fan.nrays()):
for i in range(fan.nrays()):
if i in cone.ambient_ray_indices():
phi.append(pullback_polynomial(x[i]))
else:
Expand All @@ -371,11 +371,10 @@ def pullback_polynomial(p):
# it remains to find the preimage of point
# map m to the monomial x^{D_m}, see reference.
F = ambient.coordinate_ring().fraction_field()
image = []
for m in dualcone.Hilbert_basis():
x_Dm = prod([ F.gen(i)**(m*n) for i,n in enumerate(fan.rays()) ])
image.append(x_Dm)
patch._embedding_center = tuple( f(list(point)) for f in image )
image = [prod([F.gen(i)**(m * n)
for i, n in enumerate(fan.rays())])
for m in dualcone.Hilbert_basis()]
patch._embedding_center = tuple(f(list(point)) for f in image)
return patch

def _best_affine_patch(self, point):
Expand Down Expand Up @@ -487,7 +486,7 @@ def neighborhood(self, point):
phi_reduced = [S(t) for t in phi]

patch._embedding_center = patch(point_preimage)
patch._embedding_morphism = patch.hom(phi_reduced,self)
patch._embedding_morphism = patch.hom(phi_reduced, self)
return patch

def dimension(self):
Expand All @@ -513,7 +512,7 @@ def dimension(self):
if '_dimension' in self.__dict__:
return self._dimension
npatches = self.ambient_space().fan().ngenerating_cones()
dims = [ self.affine_patch(i).dimension() for i in range(0,npatches) ]
dims = [self.affine_patch(i).dimension() for i in range(npatches)]
self._dimension = max(dims)
return self._dimension

Expand Down Expand Up @@ -582,7 +581,8 @@ def is_smooth(self, point=None):
if '_smooth' in self.__dict__:
return self._smooth
npatches = self.ambient_space().fan().ngenerating_cones()
self._smooth = all(self.affine_patch(i).is_smooth() for i in range(0,npatches))
self._smooth = all(self.affine_patch(i).is_smooth()
for i in range(npatches))
return self._smooth

def is_nondegenerate(self):
Expand Down Expand Up @@ -692,7 +692,7 @@ def restrict(cone):
enumerate(SR.subs(divide).gens())])
return ideal, Jac_patch + SR_patch

for dim in range(0, fan.dim() + 1):
for dim in range(fan.dim() + 1):
for cone in fan(dim):
ideal1, ideal2 = restrict(cone)
if ideal1.is_zero() or ideal2.dimension() != -1:
Expand Down

0 comments on commit eb066da

Please sign in to comment.