Skip to content

vguigue/tuto_numpy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

59 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

1. Tutoriel sur python et numpy

Ce tutoriel est basé sur des notebook jupyter, il requiert:

  • une distribution scientifique de python, la plus répendue étant anaconda lien
  • [mac/linux] pour travailler sur les canevas proposés, il suffit ensuite de taper: jupyter-notebook <fichier.ipynb>
  • [windows] naviguer dans anaconda pour charger le fichier
  • [online] en cas de problème, les liens ci-dessous donne accès aux mêmes TP en ligne via google colab
    • il faut un compte gmail et une connexion internet pour en profiter
  • [option avancée] éventuellement un éditeur avancé capable de gérer les notebooks: VS Code lien VS Code est très bien fait: à l'ouverture des fichiers, en fonction des extensions, il propose de télécharger des plugins pour gérer les spécificités desdits fichiers.
  1. La prise en main de python et des notebooks est très importante:
  2. posez vos questions au fur et à mesure,
  3. ne vous laissez pas étourdir par les notebooks qui avancent tout seuls: cherchez toujours à comprendre ce qui se passe,
  4. ne pas passer trop de temps sur les premières boites, vous pourrez toujours revenir en arrière
  5. Numpy et matplotlib sont des librairies à maitriser

2. Classification bayesienne

Il s'agit à la fois d'une introduction au machine learning et aux bonnes pratiques et d'exercices avancés sur numpy/matplotlib. On consolide la pratique du python scientifique à travers la construction et l'évaluation de modèles de machine learning.

3. Descente de gradient et régression

Dernière séance consacrée à numpy: nous allons apprendre un régresseur par descente de gradient afin de réviser:

  1. numpy
  2. la problématique de la régression
  3. l'algorithme de la descente de gradient

De nouveau, nous consolidons les bases de numpy/matplotlib... Tout en poursuivant le panorama du ML vers les problèmes de régression et de gradient. Ce dernier point est critique: le gradient est un outil central dans tous les réseaux de neurones et il est important d'avoir une représentation mentale de l'impact des différents réglages possibles.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published