Algorithms applied to Last-Mile Dynamic Capacitated Vehicle Routing Problems
This is a Dynamic CVRP solver developed as an undergraduate research program financed by Loggi.
Please, address suggestions, bugs and contributions to Vinicius Verona.
- In order to execute, make sure to have installed Julia Language.
- For each instance, there must have a compressed distance matrix. See compressed matrix for some distance matrix examples.
Execution Syntax:
$ julia -O 3 main.jl -i <instance> [options]
Where:
[ --input -> -i ] |> Required |> Set instance used (JSON)
Options:
[ --help -> -h ] |> Not Required |> Display this message
[ --seed -> -s ] |> Not Required |> Set seed used on random selections
[ --k-near -> -k ] |> Not Required |> Set the number of stored delivery nearest adjacents
[ --timer -> -t ] |> Not Required |> Set the heuristic execution time (Milliseconds) - Default value: 0
[ --DEBUG ] |> Not Required |> Set debug mode (Profiling)
-------------------------------- Execution Examples ---------------------------------
$ julia main.jl -s 1 -i data/input/train/df-0/cvrp-0-df-0.json
$ julia main.jl -i data/input/train/rj-5/cvrp-5-rj-89.json -t 9e5 --DEBUG
$ julia main.jl -s 1 -i data/input/train/df-0/cvrp-0-df-0.json -t 18e5 -k 50