- vggface_feature_extraction
- facenet_feature_extraction
- lbp_feature_extraction
python3 vggface_feature_extraction.py -n resnet50 -s ../image_list.txt -d ../output_folder
The default weights for VGGFace and ResNet50 are trained on VGGFace and VGGFace2, respectively.
- mult_feature_match_list
python3 mult_feature_match_list.py -p ../probe_list.txt -o ../output_results/ -d MORPH -gr AA -m 1
python3 plot_relative_freq_histogram.py -a1 ../authentic_dist1.txt -i1 ../impostor_dist1.txt -l1 Label1 -a2 ../authentic_dist2.txt -i2 ../impostor_dist2.txt -l2 Label2 -t 'Tittle' -d ../save_folder -n output
O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In BMVC, 2015.
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385, 2015.
Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. Vggface2: A dataset for recognising faces across pose and age. In Face and Gesture Recognition, 2018.
Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In European Conference on Computer Vision, 2016.
X. Tan and B. Triggs. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, 2010.
Deng, Jiankang, et al. Arcface: Additive angular margin loss for deep face recognition. IEEE Conference on Computer Vision and Pattern Recognition. 2019.