🚀 Welcome to the repository for the paper "Reverse Ordering Techniques for Attention-Based Channel Prediction"! This repository contains the code to reproduce the main results of our research work (see our paper and poster for details).
In our study, we introduce two models for predicting time-varying channels: Transformer-RPE and Seq2Seq-attn-R. Both outperform existing methods in channel prediction accuracy across different noise levels and generalize to unseen sequence lengths.
The channel dataset can be downloaded here as a .zip
file.
After you have downloaded and extracted the dataset, you have put it in the same folder of the source code.
You can reproduce the results with these commands:
python main.py transformer-rpe
or
python main.py seq2seq-attn-r
You will see this on your terminal for the Transformer-RPE:
Click to expand test results
Testing l=16 and delta=4 (same as training): SNR=-5dB NMSE=0.4747
Testing l=8 and delta=2: SNR=-5dB NMSE=0.5138
Testing l=14 and delta=6: SNR=-5dB NMSE=0.574
---------------------------------------------------------------------------
Testing l=16 and delta=4 (same as training): SNR=0dB NMSE=0.2915
Testing l=8 and delta=2: SNR=0dB NMSE=0.3225
Testing l=14 and delta=6: SNR=0dB NMSE=0.4014
---------------------------------------------------------------------------
Testing l=16 and delta=4 (same as training): SNR=5dB NMSE=0.1808
Testing l=8 and delta=2: SNR=5dB NMSE=0.1742
Testing l=14 and delta=6: SNR=5dB NMSE=0.289
---------------------------------------------------------------------------
Testing l=16 and delta=4 (same as training): SNR=10dB NMSE=0.1127
Testing l=8 and delta=2: SNR=10dB NMSE=0.0945
Testing l=14 and delta=6: SNR=10dB NMSE=0.203
---------------------------------------------------------------------------
Testing l=16 and delta=4 (same as training): SNR=15dB NMSE=0.0711
Testing l=8 and delta=2: SNR=15dB NMSE=0.0583
Testing l=14 and delta=6: SNR=15dB NMSE=0.1373
---------------------------------------------------------------------------
Testing l=16 and delta=4 (same as training): SNR=20dB NMSE=0.0448
Testing l=8 and delta=2: SNR=20dB NMSE=0.0388
Testing l=14 and delta=6: SNR=20dB NMSE=0.1074
---------------------------------------------------------------------------
And this for the Seq2Seq-attn-R:
Click to expand test results
Testing l=16 and delta=4 (same as training): SNR=-5dB NMSE=0.5075
Testing l=8 and delta=2: SNR=-5dB NMSE=0.519
Testing l=14 and delta=6: SNR=-5dB NMSE=0.6161
---------------------------------------------------------------------------
Testing l=16 and delta=4 (same as training): SNR=0dB NMSE=0.3164
Testing l=8 and delta=2: SNR=0dB NMSE=0.3041
Testing l=14 and delta=6: SNR=0dB NMSE=0.4243
---------------------------------------------------------------------------
Testing l=16 and delta=4 (same as training): SNR=5dB NMSE=0.1993
Testing l=8 and delta=2: SNR=5dB NMSE=0.1876
Testing l=14 and delta=6: SNR=5dB NMSE=0.2988
---------------------------------------------------------------------------
Testing l=16 and delta=4 (same as training): SNR=10dB NMSE=0.1217
Testing l=8 and delta=2: SNR=10dB NMSE=0.118
Testing l=14 and delta=6: SNR=10dB NMSE=0.2083
---------------------------------------------------------------------------
Testing l=16 and delta=4 (same as training): SNR=15dB NMSE=0.0739
Testing l=8 and delta=2: SNR=15dB NMSE=0.0747
Testing l=14 and delta=6: SNR=15dB NMSE=0.148
---------------------------------------------------------------------------
Testing l=16 and delta=4 (same as training): SNR=20dB NMSE=0.0466
Testing l=8 and delta=2: SNR=20dB NMSE=0.0523
Testing l=14 and delta=6: SNR=20dB NMSE=0.119
---------------------------------------------------------------------------
📚 If you are using this code and/or the provided dataset for your research, please cite
@article{rizzello2024reverse,
author={Rizzello, Valentina and B{\"o}ck, Benedikt and Joham, Michael and Utschick, Wolfgang},
journal={IEEE Open Journal of Signal Processing},
title={Reverse Ordering Techniques for Attention-Based Channel Prediction},
year={2024},
volume={5},
number={},
pages={248-256},
doi={10.1109/OJSP.2023.3344024}
}