Skip to content
This repository has been archived by the owner on Nov 7, 2023. It is now read-only.
/ Diaz2019 Public archive

Analysis of single-cell RNA seq data appearing in Diaz & Wagner et al (Nature 2020)

Notifications You must be signed in to change notification settings

wagnerde/Diaz2019

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Diaz2019

scRNA-seq data analysis for figures appearing in the following publication:

Diaz-Cuadros M*, Wagner DE*, Budjan C, Hubaud A, Tarazona OA, Donelly S, Michaut A, Al Tanoury Z, Yoshioka-Kobayashi K, Niino Y, Kageyama R, Miyawaki A, Touboul J & Pourquié O. In vitro characterization of the human segmentation clock. Nature 2020. doi.org/10.1038/s41586-019-1885-9.

Installation

Start by cloning this repository using git:

git clone https://github.com/wagnerde/Diaz2019.git
cd Diaz2019

scRNA-seq data files are too large to include within this Github repo, and must be downloaded separately. Using the command line, download and unzip the Diaz et. al. 2019 scRNA-seq data. The unzipped '_rawData' directory should then reside in the 'Diaz2019' directory that we just created:

wget https://kleintools.hms.harvard.edu/paper_websites/diaz_2019/Diaz2019_inDropsCountsTables.zip --no-check-certificate
unzip Diaz2019_inDropsCountsTables.zip

Create a Python 3.6 conda environment to manage the required software packages:

conda create --name py36 python=3.6 -y

Activate the environment:

source activate py36

Begin installing packages with conda and pip:

conda install -y -q seaborn scikit-learn statsmodels numba pytables
conda install -y -q -c conda-forge python-igraph louvain jupyterlab leidenalg
conda install -y -q -c bioconda bbknn
pip install scanpy fa2 MulticoreTSNE

Install Scrublet:

git clone https://github.com/AllonKleinLab/scrublet.git
cd scrublet
pip install -r requirements.txt
pip install --upgrade .
cd ..

Run the Jupyter notebooks

Activate the py36 environment and run Jupyter Lab. Within Jupyter lab, navigate to one of the dataset folders (mmE95, mmES, hsIPS), and open the .ipynb file.

source activate py36
jupyter lab

About

Analysis of single-cell RNA seq data appearing in Diaz & Wagner et al (Nature 2020)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages